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Abstract

Understanding heat transport in semiconductors and insulators is of fundamental signif-
icance, for instance, for renewable energy harvesting and conversion in thermoelectric
devices. Lattice dynamics provides a powerful framework for the description of heat
transport from the phonon scattering perspective and naturally includes quantum effects
in the atomic vibrations. However, only the leading orders of anharmonicity are accounted
for. In comparison, the Green-Kubo method is based on equilibrium Molecular dynamics
simulations and the fluctuation-dissipation theorem is utilized to calculate the thermal
conductivity for materials with strong anharmonicity. In this method, anharmonic effects
are fully accounted for, but quantum-mechanical effects are not included in the nuclear
dynamics. A comparison between these two methods is needed to understand under
which circumstances which method is preferable. Most importantly, this sheds light on
the validity range of the respective approximations, i.e., the perturbative treatment of
anharmonicity and the classical treatment of the nuclear dynamics.
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1. Introduction/Motivation

Thermal conductivity describes the capability of a material to conduct heat. Heat transport
describes the flow of the thermal energy or heat flux due to a temperature gradient. The
physical mechanism of heat transport can be related to different kinds of heat carriers,
namely, electrons, photons or phonons. In metals, electrons and phonons can both transfer
heat, while in nonmetals, i.e. semiconductors or insulators, thermal transport is exclusively
dominated by phonons especially at high temperature. In this work we focus on the phonon
contributions to the thermal conductivity. Heat transport and thermal conductivity play
a vital importance in many scientific and engineering applications, for example, earth
science[1, 2], building components[3] and electronic devices[4]. Among these diverse
applications, thermoelectric materials and devices, based on the direct and reversible
energy conversion between heat and electricity, can help addressing the global energy
dilemma.[5] To be more specific, in a thermoelectric power generator, the hot ends of
the n-type and p-type semiconductor material are electrically connected and a load is
connected across the cold ends. Due to the Seebeck effect, voltage is produced and will
impose a current to flow through the load, generating electrical power. This process is
illustrated on the left side of Fig. (1.1) and a reverse process is shown in the right part.
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Figure 1.1.: Power generation and cooling/heating thermoelectric heat engines by a solid-state device. Fig
from Ref.[6]

The conversion efficiency of a thermoelectric material can be quantified by the dimension-
less figure-of-merit

ZT =
S2σ

κ
T =

S2σ

κe + κ1
T, (1.0.1)

with S the Seebeck coefficient, σ the electric conductivity and κ thermal conductivity.
The latter consists of both the electron and phonon contributions, denoted as κe and κl.
As Eq. (1.0.1) suggests, the performance of a thermoelectric material can be improved
by increasing the power factor S2σ, by reducing the lattice thermal conductivity by
introducing scattering centers. However, the interdependency of these processes challenges
such enhancement efforts. For example, for most of the homogeneous materials, the carrier
concentration increases electrical conductivity but reduces the Seebeck coefficient[7].
Based on a kinetic definition, S is the energy difference between the average energy of
mobile carriers and the Fermi energy[8], and the Fermi energy increases faster than the
average energy when a larger carrier density is given. In this sense, increasing the carrier
density leads to smaller Seebeck coefficients. This coupling effect for electron coefficients
applies also for the electrical conductivity and the electronic contribution to the thermal
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conductivity according to the famous Wiedemann–Franz Law[9]

ke/σ = LT. (1.0.2)

In contrast to the interdependent electronic coefficients, phonon contributions which will
also be the core of this work are mostly independent. Nanoscale constituents are used
to introduce quantum confinement effects to increase power factors and provide many
internal interfaces to scatter phonons.[7, 10] The change of phonon group velocities and
dispersion due to the spatial confinement leads to the increase of the phonon relaxation rate
and a considerable drop in lattice thermal conductivity.[7] To be more specific, Bismuth
nanotubes and nanowires are shown as an example in Fig. (1.2). Here, the thermal
conductivity is suppressed to 5 times less than that of Bismuth powder.

Figure 1.2.: Thermal conductivity and ZT as a function of temperature for three Bi nanostructured network
samples in comparison with the Bi reference. Fig from Ref.[11]

Due to the many applications, the theoretical prediction of lattice thermal conductivity is
of paramount importance in the studies of thermal transport properties of solid materials,
where lattice vibrations contribute mostly.[12] Theoretical studies of thermal conductivity
can be divided into two classes, lattice dynamics (LD) and molecular dynamics (MD). The
LD method computes the harmonic and anharmonic force constants and solves the phonon
Boltzmann Transport Equation[13, 14] to obtain the thermal conductivity. This method
highly relies on the lattice symmetry to reduce the calculation complexity. Normally, it only
considers the three-phonon scattering process to circumvent the high order anharmonic
force constant calculations. In comparison to the LD method which focus on the phonons,
MD method is a real-space approach which tracks the position and momentum of each
atom. In this method, the only required inputs are an initial condition and a model for
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predicting the forces between atoms, for instance, an empirical potential, or obtained
from density functional theory (DFT) calculations. There are two widely-used MD-based
methods for predicting thermal conductivity, direct method based on nonequilibrium MD
and Green–Kubo method based on equilibrium MD. In the direct method, a temperature
gradient is imposed on the simulation cell and the thermal conductivity is calculated by
Fourier’s law.[15] Conversely, the Green–Kubo method relates the equilibrium current fluc-
tuations to the thermal conductivity according to the fluctuation-dissipation theorem,[16]
which requires smaller cells compared to the direct method. The limits of the above-
mentioned classical MD lie on the underestimation of nuclear quantum effects (NQEs),
such as delocalization, zero-point energy, and tunneling[17], which leads to errors while
studying systems with hydrogen bonds or organic molecules featuring a C-H bond.[18]

In this thesis, the applicability and validity of both the lattice method and Green-Kubo
method will be inspected and compared for different compounds. The thesis will be
organised in a way that the first part introduces the theoretical concepts to understand the
thermal conductivity calculation. In sec. (2.1, 2.2) the quantum mechanical many-body
problem and Density Function Theory(DFT) as an approximation method for solving
the electronic problem are introduced. Section (2.3) presents nuclear dynamics model
by taking harmonic approximation as a powerful starting point and goes beyond to
anharmonicity, which plays a vital role in thermal conductivity calculation. Section (2.4)
is dedicated to the key concepts of Molecular dynamics simulation with non-perturbative
treatment of nuclear dynamics, which along with the detailed Green-Kubo formalism in Sec.
(2.5) gives another approach to the lattice thermal conductivity calculation. The second
part shows a toy model, one dimensional CH2 chain to practise the thermal conductivity
calculations based on LD and MD methods to save the time in the following real structures.
The third part will contain the calculations and properties survey on MgO, CsF, KCaF3,
LiGaTe2 and Lil to give a comparative benchmark of lattice thermal conductivity by ab
initio Green-Kubo calculation. All calculations presented in this thesis are performed via
FHI-aims[19, 20] and FHI-vibes[21, 22].
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2. Fundamental Principles

2.1. Solution to Schrödinger Equation

Considering some well-defined collection of atoms which define the crystal of an interested
material, it is desired to understand how does their energy vary with their positions. In
this case, both the nucleus and electrons should be taken into consideration, which
enhances the complexity of this problem. Fortunately, based on the Born-Oppenheimer
approximation, nuclei can be fixed in most cases when studying the motion of electrons
since the atomic nuclei are much heavier than individual electrons. Thus, the ground
state energy of a collection of atoms can be computed by the solution to the Schrödinger
Equation:

ĤΨ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN ) (2.1.1)

The Hamiltonian operator consists of a sum of three terms, namely, the kinetic energy of
the electrons, the interaction between each electron and the collection of atomic nuclei,
and the interaction between electrons:

Ĥ = −1

2

N∑︂
i

∇2
i + V̂ ext +

N∑︂
i<j

1

|ri − rj |
, (2.1.2)

where

V̂ ext = −
Nat∑︂
α

Zα

|ri −Rα|
(2.1.3)

Here, ri is the coordinate of electron i and the charge on the nucleus atRα is Zα. According
to the variational theorem, the ground state Ψ and energy E0 are given by the full
minimization of the functional E[Ψ] with the constraint that all wave-functions have
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anti-symmetry, which means if two electrons exchange their position, the wave function
has to change its sign, since electrons are fermions.

E[Ψ] =

∫︂
Ψ∗ĤΨdr ≡ ⟨Ψ|Ĥ|Ψ⟩ (2.1.4)

E[Ψ] ≥ E0 (2.1.5)

2.1.1. Hartree-Fock Approximation

In Hartree-Fock theory, Ψ is approximated as an antisymmetric product of the orthonormal
electronic wave-function, with the form

ΨHF =
1√
N !

det [φ1φ2φ3 ..φN ] (2.1.6)

In this case, by replacing Ψ with ΨHF in Eq.(2.1.4), the Hartree Fock energy is obtained
as

EHF =

∫︂
φ∗i (r)

(︄
−1

2

N∑︂
i

∇2
i + Vext

)︄
φi(r)dr

+
1

2

N∑︂
i,j

∫︂
φ∗i (r1)φi (r1)φ

∗
j (r2)φj (r2)

|ri − rj |
dr1dr2

− 1

2

N∑︂
i,j

∫︂
φ∗i (r1)φj (r1)φi (r2)φ

∗
j (r2)

|ri − rj |
dr1dr2,

(2.1.7)

where the second integral is called Coulomb integral and the third one is the exchange
integral. The minimisation of this energy expression is subject to the ortho-normalization
condition ∫︂

ψ∗
i (x)ψj(x)dx = δij (2.1.8)

and gives the Hartree-Fock equations[︃
−1

2
∇2 + vext(r) +

∫︂
ρ (r′)

|r− r′|
dr′
]︃
φi(r) +

∫︂
vX
(︁
r, r′

)︁
φi
(︁
r′
)︁
dr′ = εiφi(r), (2.1.9)
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where vX represents the non-local exchange potential given as[23]:∫︂
vX
(︁
r, r′

)︁
φi
(︁
r′
)︁
dr′ = −

N∑︂
j

∫︂
φj(r)φ

∗
j (r

′)

|r− r′|
φi
(︁
r′
)︁
dr′ (2.1.10)

It should be noticed that this expression is still an approximation to the real physical
picture.

2.2. Density Functional Theory

The discussion above shows that the ground state energy can be approximately computed
by solving the Schrödinger equation and determining the 3N dimensional wave-function,
which however involves a large computation and memory cost. This problem can be
circumvented by expressing the energy as a functional of charge density which reduces
the problem to a 3-dimensional one according to the Hohenberg-Kohn theorem.

2.2.1. Hohenberg-Kohn theorems

The field of Density Functional Theory(DFT) is based on the two Hohenberg-Kohn theo-
rems[24]:

Theorem I For any system of interacting electrons in an external potential Vext, the
potential is determined uniquely (up to a constant) by the ground-state density.

Since the total number of electrons can also be calculated by the integration of the charge
density over all space, this statement immediately gives that the electron density uniquely
determines the Hamiltonian operator and thus the energy of the system is controlled by
the ground-state density.

Theorem II A universal functional for the energy in terms of the density can be defined
such that the exact ground-state energy is the global minimum of this functional with the
ground-state density.
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The second theorem establishes a variational principle that the ground-state energy can
be obtained by minimising the functional

δ

[︃
E[ρ]− µ

(︃∫︂
ρ(r)dr−N

)︃]︃
= 0. (2.2.1)

According to Eq.(2.1.1), E[ρ] is given as

E[ρ] = T [ρ] + Vext[ρ] + Vee[ρ] (2.2.2)

with the trivial external potential term

Vext[ρ] =

∫︂
V̂ extρ(r)dr. (2.2.3)

Here E[ρ] is the ground-state total energy subject to the constraint that the density
contains N electrons and µ is the chemical potential. Hence, the associated Euler-Lagrange
equation can be written as

µ =
δE[ρ]

δρ(r)
= Vext(r) +

δFHK[ρ]

δρ(r)
, (2.2.4)

where
FHK[ρ] = T [ρ] + Vee[ρ] (2.2.5)

is not explicitly known. Note that FHK[ρ] is independent from the external potential,
which means it is a universal functional of ρ(r) and once it has an explicit form, any system
could be solved. In addition, this theorem restrict DFT to be a ground-state theory.

2.2.2. Kohn-Sham Method

Kohn and Sham proposed to approximate the kinetic and electron-electron functionals by
N non-interacting electrons φi. Accordingly, their kinetic energy and the charge density
can be expressed as

Ts[ρ] = −1

2

N∑︂
i

⟨︁
φi
⃓⃓
∇2
⃓⃓
φi
⟩︁

(2.2.6)
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and

ρ(r) =
∑︂
i

ρi(r) =
∑︂
i

φ∗i (r)φi(r). (2.2.7)

It should be noticed that this is just the kinetic energy for non-interacting KS particles.
Similarly, based on the Coulomb integral from Eq.(2.1.7) and Eq.(2.2.7), the electron-
electron interaction is approximated using the classical Coulomb interaction or Hartree
potential for non-interacting electrons:

VH [ρ] =
1

2

∫︂
ρ (r1) ρ (r2)

|r1 − r2|
dr1dr2. (2.2.8)

Moreover, the total Kohn-Sham functional is composed of the kinetic energy, the external
energy, Hartree potential which describes the interaction between electrons, exchange-
correlation energy, shown as follows:

E[ρ] = Ts[ρ] + Vext[ρ] + VH [ρ] + Exc[ρ], (2.2.9)

where the exchange-correlation functional is defined as:

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Vee[ρ]− VH [ρ]) , (2.2.10)

which means it includes all many-body effects, i.e., the non-classical kinetic energy and the
non-classical electron-electron interaction. To be more specific, Exc contains both the error
made by using Ts[ρ] instead of T [ρ] and the error made in treating the electron-electron
interaction as Coulomb repulsion but neglecting the non-classical term. The minimisation
of the total functional by means of variation principle and Lagrangian multipliers under
the constraints of mutual orthonormality of the orbitals results in the KS equation,[︃

−∇2

2
+ Vext(r) + VH(r) + Vxc(r)

]︃
φi(r) = ϵiφi(r). (2.2.11)

Comparing Eq.(2.2.11) with Eq.(2.1.9), it shows that they share the same structures
except that the non-local exchange potential vX in Hartree-Fock equations is replaced
by the local exchange-correlation potential Vxc in Kohn-Sham equations. It should be
noted that ϵi are not energy eigenvalues but only Lagrangian multipliers. In addition, the
solutions to Kohn-Sham equations are independent single-electron wave functions that
depend only on three spatial variables.
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2.2.3. Exchange-Correlation Functional

In order to solve the Kohn-Sham equations exactly, explicit expression of xc functionals has
to be known. However, since the functional is universal, which means it does not depend
on any particular system, the functional could be approximated by determining the exact
properties of that universal functional in a number of systems. Various Exc functionals are
categorized according to their complexity in Fig.(2.1) by Perdew and this is known as
"Jacob’s ladder".

Figure 2.1.: Schematic diagram of “Jacob’s ladder” of exchange-correlation functionals with 5 rungs
showing some of the most common functionals. Fig. from Ref [25, 26].

Local-density Approximation(LDA)

This approximation is based on the homogeneous electron gas, as first studied by Thomas
and Fermi in the early 1920’s[27]. It assumes that all electrons in an infinitesimal volume
are subject to one constant external potential and the charge density is constant. Then for
a real inhomogeneous system, the integral over every infinitesimal volumes with different
charge density gives the total exchange-correlation energy functional,

ELDA
xc [ρ] ≈

∫︂
ρ(r)εxc(ρ(r))dr (2.2.12)
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where εxc indicates the exchange and correlation energy per particle of a uniform electron
gas of density ρ.

The LDA has proven to describe various properties of the system, such as structure,
vibrational frequencies and elastic moduli. However, its shortcomings are also recognized,
including the overestimation of the binding energies and underestimation of the energy
barriers in diffusion or chemical reactions.

Generalised Gradient Approximation(GGA)

In GGA, not only the density but also its gradient is taken into consideration in the
exchange-correlation functional. The typical form for a GGA functional is:

Exc ≈
∫︂
ρ(r)εxc(ρ,∇ρ)dr. (2.2.13)

There are a number of examples of GGA functionals, including PBE[28], PBEsol[29],
PW91[30] and so on. Typically, GGA has a better performance than LDA on calculating
the binding energy, geometries and elastic coefficient.

Hybrid Exchange Functional

A hybrid exchange–correlation functional incorporates a portion of exact Hartree Fock
exchange correlation evaluated for the Kohn-Sham orbitals. One specific example is the
HSE(Heyd–Scuseria–Ernzerhof)[31] exchange-correlation functional, in which the long-
range part of the Hartree Fock exchange interaction is screened by applying a screened
Coulomb potential into the exchange interaction.

EωPBEh
xc =aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω)

+ EPBE,LR
x (ω) + EPBE

c .
(2.2.14)

Here, a is the mixing parameter, and ω is a parameter controlling the screening and
EHF,SR

c (ω) is the short-range Hartree-Fock exact exchange.
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2.2.4. Solution to Kohn Sham Equations

It is well-known that the number of atoms is in the order of Avogadro’s number. In this
case, solving the Schrödinger equation for each atom is not feasible.

Bloch Theorem

The Bravais lattice is an infinite periodic array of discrete points and it can describe any
crystalline solid via

R = n1a1 + n2a2 + n3a3, (2.2.15)
where a1, a2 and a3 are called primitive vectors and n are integers. The solution to the
Schrödinger equation for periodic system, for instance solids, must satisfy Bloch’s theorem,
where the solution should have the plane-wave form

φnk(r) = exp(ik · r)unk(r) (2.2.16)

where unk(r) has the same periodicity as the supercell,

unk(R+ r) = unk(r) (2.2.17)

for all R in the Bravais lattice. Combining the Eqs.(2.2.16) and (2.2.17) gives that

φnk(r+R) = exp(ik ·R)φnk(r). (2.2.18)

Here, the index k indicates a set of plane waves within each primitive unit cell and the
index n is known as the band index. For a given k, there will be many independent
eigenstates of H and thus many solutions with discretely spaced eigenvalues, which could
be labeled by this second quantum number n. Fortunately, solids contain some periodicity
and thus the calculation could be reduced to the unit cell by applying the Born von Karman
periodic boundary condition,

φ(r+Niai) = φ(r), i = 1, 2, 3 (2.2.19)

where the three primitive lattice vectors ai define the Bravais lattice and Ni is an integer
of order N

1
3 , where N = N1N2N3 is the total number of primitive cells in the crystal.

Substitution of the boundary condition to Bloch’s theorem leads to the general form for
allowed Bloch wave vectors

k =
3∑︂

i=1

mi

Ni
bi, mi is integer. (2.2.20)
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Here, bi are reciprocal lattice vectors satisfying the relation

bi · aj = 2πδij . (2.2.21)

Basis Set

In practice, the Kohn Sham equation(Eq. 2.2.11) can only be solved self-consistently by
picking a basis set to expand the electronic Kohn-Sham eigenfunctions φi as

φi =
∑︂
j

cijζj(r). (2.2.22)

This particular work is based on the full algorithmic framework embodied in the Fritz Haber
Institute “ab initio molecular simulations” (FHI-aims) computer program package[20],
which utilizes numeric atom-centered orbital(NAO) as basis functions

ζi(r) =
ui(r)

r
Ylm(Ω). (2.2.23)

Here, the basis function consists of the numerically tabulated radial function ui(r) and
complex spherical harmonics Ylm(Ω). Combining the exponential part from the Bloch
theorem gives the final expression for the Bloch-like basis set

χi,k(r) =
∑︂
N

exp[ik · T (N)] · ζi [r −Rat + T (N)] (2.2.24)

provided for periodic calculations in FHI-aims. T(N) represents the translation vector
between the unit cell and its periodic images, and Rat are the coordinates of the nucleus
for basis function in the unit cell. The above eq. (2.2.24) implies that only finite k-grid
are used in practical calculations and the convergence of the quantities of interest with
respect to this numerical parameter should always be checked.

2.3. Dynamic lattice model

2.3.1. Harmonic approximation

Compared with a static lattice model assumed in the previous sections, now the nucleus
does have the flexibility to move at the sites R of a Bravais lattice. If the each ion does
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not deviate much from its equilibrium position compared with the inter-ionic spacing, the
harmonic approximation can be applied to model this motion. To be more specific, we
consider an ion siting at R and a displacement r(R)around its equilibrium, leading to the
instantaneous position r(R),

rR = R+ uR. (2.3.1)

The potential-energy surface(PES) for the nuclei, on which the nuclei move, can be
approximated by a Taylor expansion of the total energy, provided by DFT calculations, for
small displacement around the equilibrium positions. Within this Taylor expansion, the
first derivative term cancels since there is no net force on any atom in equilibrium. One
thus obtains

E(uI) = E0 +
1

2

∑︂
Iα,Jβ

∂2E

∂uαI ∂u
β
J

uαI u
β
J , (2.3.2)

with the Hessian matrix

ΦIJ =
∂2E

∂uαI ∂u
β
J

= − lim
ϵ→0

FJ

(︁
u0I + ϵdI

)︁
ϵ

. (2.3.3)

The respective equation of motion is solved by the plane-wave ansatz

uIα =
A√
MI

ϵIα(q, s)e
i(q·RI−ωt). (2.3.4)

Here, ϵIα is a polarization vector of the normal mode that describes the direction in which
ions move. ΦIJ is also called force-constant matrix and represents the response of atom I to
the displacement of atom J in some direction β. In this work, this second-order derivative
will be computed numerically by finite differences method. However, the periodic images
RJ ′ have to be accounted for due to the periodic boundary condition. In this case, the
Hessian is in principle a matrix with infinite size. In non-ionic crystals, however, the
coupling between two atoms I and J quickly decays with their distance RIJ , so the Hessian
can be computed with finite supercells, the size convergence of which must be accurately
inspected. The mass-reduced Fourier transformation of the force constant matrix gives
the so-called dynamical matrix DIJ , shown as

DIJ(q) =
∑︂
J ′

ei(q·RJJ′ )

√
MIMJ

ΦIJ ′ , (2.3.5)

which determines the equation of motion for each reciprocal vector q in the periodic array
of atoms[32],

D(q)ϵs(q) = ω2
s(q)ϵs(q), s = 1, 2, 3, ...3N. (2.3.6)
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The eigenfrequency in the harmonic approximation is expressed as

ω2
s(q) =

∑︂
IJ,αβ

ϵ∗αI,s(q)ϵ
β
J,s(q)√

MIMJ
Φαβ
IJ e

iq·(RJ−RI), (2.3.7)

which implies that if a primitive cell has N atoms, then there will be 3N solutions at each
q point. Each real eigenvalue ωs(q) represents a mode or phonon branch and the set of
them constitutes the dispersion relation and the phonon spectrum, in which the lowest
three branches in solids are called acoustic mode, which means the translation motion of
the molecule, while other (3N-3) branches represent the optical modes. Moreover, the
density of state(DOS) is a significant quantity, that can be calculated by integrating the
number of states in an infinitesimal energy window [ω, ω + dω] as:

g(ω) =
∑︂
s

∫︂
dq

(2π)3
δ(ω − ω(q)). (2.3.8)

The DOS allows to compute other thermodynamic quantities, for instance, the Helmholtz
free energy, from which the heat capacity can further be calculated.

F ha(T, V ) =

∫︂
dωg(ω)

(︃
ℏω
2

+ kBT ln

(︃
1− e

− ℏω
kBT

)︃)︃
(2.3.9)

CV = −T
(︃
∂2F ha(T, V )

∂T 2

)︃
V

. (2.3.10)

2.3.2. Beyond Harmonic approximation

In the Born-Oppenheimer approximation, the vibrational properties of molecules and solids
are determined by their electronic structure through the dependence of the ground-state
energy on the coordinates of the atomic nuclei. Further, in the harmonic approxima-
tion(HA), where the amplitudes of atomic vibrations at low temperature are much smaller
than inter-atomic distances, it is assumed that the properties of solids can be calculated by
only considering the dominant non-vanishing quadratic term in the expansion of the total
energy about its equilibrium value. However, it has been noticed that some phenomena,
for example, the thermal expansion can not be determined by this term.

In the HA, vibrational frequencies do not depend on inter-atomic distances, so that
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the vibrational contribution to the crystal internal energy does not depend on volume.
Consequently, specific heats under constant pressure and constant volume are the same,
and equilibrium volume of a crystal does not depend on temperature. To be more specific,
for a harmonic crystal the equilibrium size or the lattice constant is independent on
temperature while in fact the elastic constants depend on both volume and temperature,
and the elastic constants under the adiabatic and isothermal condition give different
values. In this case, higher-order terms, i.e. the anharmonic terms in the expansion of the
total energy need to be accounted for. A proper account of anharmonic effects on the static
and dynamical properties of materials would require the calculation of phonon-phonon
interaction coefficients for all modes in the Brillouin zone, which will be discussed in the
next two sections.

Here, the generalized harmonic approximation, i.e. quasi harmonic approximation(QHA)
accounts for the volume-dependence of both the total energy Etot(V ) and the force
constant Φαβ

IJ (V ), which correct for the above mentioned deficiencies without any explicit
calculation of anharmonic interaction coefficients. In this case, the Helmholtz free energy
can be expressed as

F (T, V ) ≈ Etot(V ) + F qha(T, V ) with F qha(T, V ) = F ha
(︂
T,Φαβ

IJ (V )
)︂
, (2.3.11)

where the equilibrium volume V0 corresponds to the minimum of the total energy of the
system Etot(V ). Once the Helmholtz free energy F (T, V ) is computed at different vol-
umes and temperatures, thermodynamic data including equilibrium free energy Etot(V ),
equilibrium volume V0, bulk modulus B, and the derivative of the bulk modulus with
respect to pressure B0 can be extracted straightforwardly by fitting F (T, V ) at different
volumes and temperatures to the Birch-Murnaghan (BM) function

F (V ) = Feq +
BV0
Bp

[︄
(V0/V )Bp

Bp− 1
+ 1

]︄
− V0B

Bp− 1
. (2.3.12)

As an example, the results of the final fitting for silicon are depicted in Fig. (2.2), where
points represent calculated data and solid lines indicate the Birch-Murnaghan equation
of state fits. Equilibrium volumes at each temperature are connected by solid black line,
which allows to compute the thermal expansion coefficient V0(T ) as

α(T ) =
1

3V0(T )

(︃
∂V0(T )

∂T

)︃
V

(2.3.13)
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The right-shift of the equilibrium volume indicates a positive thermal expansion coefficient,
which agrees with the intuition that matter tends to expand under high temperature.
However, there exist some exceptions, for example, that diamond and zinc-blend semicon-
ductors have a negative thermal expansion coefficient at 100K.[33, 34]

Figure 2.2.: Free energy and volume data fitted using Birch-Murnaghan function for different temperatures
for Si. Fig. from Ref.[35]

In order to assess temperature dependence of volumes and lattice constants, the volume
expansion coefficient is defined as thermodynamic derivative

α(T ) = − 1

3B

(︃
∂2F (T, V )

∂T∂V

)︃
V0(T )

(2.3.14)
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whereby B is the bulk modulus which measures the resistance of the material to compres-
sion. With the static limit V0(T ) → V0, inserting the harmonic free energy defined in Eq.
(2.3.9) into the above Eq. (2.3.14) yields a more practical expression

α =
1

3B0

∑︂
q,s

(︃
−∂ℏωs(q)

∂V

)︃
∂neqs (q)

∂T
=

1

3B0

∑︂
q,s

ℏωs(q)γs(q)

V

∂neqs (q)

∂T
=
γCV

3B0
. (2.3.15)

with the mode-specific Grüneisen parameter γs(q) and an average Grüneisen parameter
defined as

γs(q) = − V

ωs(q)

∂ωs(q)

∂V
(2.3.16)

γ =

∑︁
q,s γs(q)cs(q)∑︁

q,s cs(q)
. (2.3.17)

Apart from the equilibrium properties, transport properties are also dominated by the
anharmonic terms. For instance, the thermal conductivity of a perfect harmonic crystal
for which the phonon states are stationary states should be infinite, in analogous to the
fact that electrons in a perfect periodic potential would have infinite electric conductivity.
This contradiction can be cleared by the fact that there exist lattice imperfections and
impurities in real crystals which results in the scattering centers for the phonons and
the limitation of the thermal current. Even in a conceptual perfect crystal, the stationary
states of the harmonic Hamiltonian are only an approximation to the real full anharmonic
Hamiltonian, which means phonons will interact with each other in the course of time. The
effect of anharmonicity can be modeled as a perturbation to the harmonic HamiltonianH0,
which causes transitions from one harmonic eigenstate to another and thus the creation,
destruction and scattering of phonons.

The expression of the total energy retaining cubic anharmonic terms is shown explicitly
as:

Etot = E0 +
1

2

∑︂
IJ,αβ

Φαβ
IJ u

α
I u

β
J +

1

6

∑︂
IJK,αβγ

Ψαβγ
IJKu

α
I u

β
Ju

γ
K , (2.3.18)

with the third-order force constants

Ψαβγ
IJK =

∂3E

∂Rα
I ∂R

β
J∂R

γ
K

. (2.3.19)
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It should be noticed that we here only consider the non-vanishing anharmonic cubic term,
again assuming that only low-order terms matter for small oscillations around equilibrium
sites. In practice, the anharmonic effect can be evaluated by perturbation theory if the
anharmonic term is small compared with the harmonic one. For this purpose, also the
third order term can be calculated by finite differences as

Ψαβγ
IJK =

∂ΦIJ

∂Rγ
K

≈
Φαβ
IJ

(︁
δRγ

K

)︁
− ΦIJ

δRγ
K

. (2.3.20)

Then perturbation theory yields an extra term compared with the harmonic approximation
in Eq.(2.3.7):

ω2
s(q) = ω2

s(q) +
∑︂
IJ,αβ

ϵ∗αI,s(q)ϵ
β
J,s(q)√

MIMJ

⎛⎝∑︂
γ,K

Ψαβγ
IJKu

γ
K

⎞⎠ eiq·(RJ−RI). (2.3.21)

2.3.3. Phonon interaction and thermal conductivity

As discussed in Sec.(2.3.1) and Sec. (2.3.2), phonons do not interact with each other
and can live forever within the harmonic approximation. In addition, anharmonic effects
manifest themselves as phonon-phonon interaction described by the phonon self-energy
∆(ω) − iΓ(ω)[36]. Among the complex function, the real part ∆(ω) is associated with
the change of the frequency due to scattering by other phonons, and thus is responsible
for the temperature dependence of the phonon frequency, and the imaginary part iΓ(ω)
gives the probability of phonon decay, indicating the reciprocal of the phonon lifetime[37].
The strength of interaction between the three phonons, namely s, s′, s′′ involved in the
scattering, can be represented by the Fourier transform of the third-order forces constant:

Ψs,s′,s′′
(︁
q,q′,q′′)︁ = 1

3!
√
N0

∑︂
IJK,αβγ

ϵαI,s(q)ϵ
β
J,s′
(︁
q′)︁ ϵγK,s′′

(︁
q′′)︁

×

√︄
ℏ

2MIωs(q)

√︄
ℏ

2MJωs′ (q′)

√︄
ℏ

2MKωs′′ (q′′, s′′)

×Ψαβγ
IJKe

iq·RIeiq
′·RJe

iq′′·RK∆(q+q′+q′′).

(2.3.22)
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The above-mentioned imaginary part of the self-energy can be now expressed using
many-body perturbation theory as

Γs(ω) =
18π

ℏ2
|Φ−ss′s′′ |2 {(ns′ + ns′′ + 1) δ (ω − ωs′ − ωs′′)

+ (ns′ − ns′′) [δ (ω + ωλ′ − ωs′′)− δ (ω − ωs′ + ωs′′)]} ,
(2.3.23)

where ∆(q+ q′ + q′′) = 1 when q + q′ + q′′ is a reciprocal lattice vector, and is zero
otherwise. Here, N0 is number of unit cells in the crystal and ns is the phonon occupation
number at the equilibrium. Since phonons follow the Bose-Einstein distribution, it follows
that

ns =
1

exp (ℏωs/kBT )− 1
. (2.3.24)

Finally, the linewidth of the phonon mode s is just 2Γs(ω) which can also be measured by
Raman spectroscopy[38] and the phonon lifetime has a simple reciprocal form:

τs =
1

2Γs (ωs)
. (2.3.25)

It has been proven that the lattice thermal conductivity can be directly computed by a
full solution of the linearized phonon Boltzmann equation(LPBE).[39] Even simpler, Togo
et al. [40] also showed that the lattice thermal conductivity is proportional to phonon
lifetimes τs in the single mode relaxation time (SMRT) method via

κ =
1

NV0

∑︂
s

Csvs ⊗ vsτ
SMRT
s , (2.3.26)

where V0 is the volume of a unit cell, and vs and τSMRT
s are the group velocity and SMRT

of the phonon mode s, respectively. Based on the SMRT approximation, every phonon
mode is assigned a relaxation time corresponding to the net effect of different scattering
mechanisms[41]. The single mode relaxation time is assumed to be the phonon lifetime,
which means

τSMRT
s = τs. (2.3.27)

Cs is the mode dependent heat capacity defined as

Cs = kB

(︃
ℏωs

kBT

)︃2 exp (ℏωs/kBT )

[exp (ℏωs/kBT )− 1]2
. (2.3.28)
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The phonon group velocity is simply given by the derivative of the eigenfrequency with
respect to the wave-vector:

vs(q) =
∂ωs(q)

∂q
=

1

2ω

⟨︃
ϵs(q)

⃓⃓⃓⃓
∂D(q)

∂q

⃓⃓⃓⃓
ϵs(q)

⟩︃
. (2.3.29)
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2.4. Molecular dynamics

Molecular dynamics (MD) is a computational approach exploring the dynamical properties
of a system defined by the Hamiltonian

H(r,p) =
∑︂
I

[︃
p2
I

2MI
+ V(rI)

]︃
(2.4.1)

whereMI is the atomic mass and V is a many-body potential obtained by an empirical
force-field or DFT calculation. The dynamical evolution of a general N-particle system is
described by the classical equations of motion

MI r̈I = FI (rI , . . . , rN , ṙI) , (2.4.2)

which are solved numerically starting from a given initial condition {r (t0) ,p (t0)}. The tra-
jectories generated by this means are used to extract micro- and macroscopic observables.
This method has been widely used to investigate condensed phase systems. For example,
the thermal decomposition of the energetic material nitromethane (CH3NO2) is studied
by MD implying different chemical reaction mechanism under high temperature(3000K)
and lower temperature(2000K).[42] Compared with the standard MD technique, which is
based on the use of empirical interatomic potential functions parametrized to experimen-
tal data, ab initio molecular dynamics(aiMD), does not require an empirical interaction
potential as input, but utilizes interatomic forces computed directly from the electronic
structure, i.e. DFT calculation discussed in section 2.2:

FI = −dEtot

drI
, (2.4.3)

where the total energy Etot is determined from the standard DFT and rI indicates the
nuclear degrees of freedom.

aiMD has been successfully demonstrated in studies of diffusional properties[43, 44, 45,
46, 47] phase transition[48] etc. However aiMD simulations are often limited to a few
hundred atoms and a short, sub-nanosecond physical timescale, which limits the accessible
statistics and thermodynamics. For instance, the number of diffusion events accessible is
limited to non-rare events.[49]
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Phase space

According to Newton’s equation shown in Eq. (2.4.2), at any time t, there will be a
corresponding position r(t) and its velocity v(t). Considering the relation between velocity
and momenta

pI =MIvI =MI ṙI , (2.4.4)

the Newton’s equation can be rewritten as

FI = maI = mi
dvI

dt
=

dpI

dt
(2.4.5)

Therefore, the full set of 6N functions, {r1(t), . . . , rN (t),p1(t), . . . ,pN (t)} describes the
classical dynamics of an N-particle system and can be considered as a single point in a
6N-dimensional space called phase space Γ, i.e. microscopic state of the system at time t.
Each point in the phase space is also known as the phase space vector and can be denoted
as

x = (r1, . . . rN ,p1, . . . ,pN ) . (2.4.6)

In this regard, the solutions to the above Newton’s Equation generate a series of points,
shown as

xt = (r1(t), . . . , rN (t),p1(t), . . . ,pN (t)) , (2.4.7)

which constitutes the trajectory in the phase space Γ.

Statistical mechanics provides a way to study the behavior of large numbers of atoms
or molecules, where large number of configurations ensures that the statistical average
⟨A⟩time of the desiring physical quantities A, with

⟨A⟩time =
1

t2 − t1

∫︂ t2

t1

dtA(t) (2.4.8)

is close to the ensemble average[50] ⟨A⟩time with

⟨A⟩ensemble =

∫︂
dΓρ(r, p)A(r, p). (2.4.9)

This method essentially integrates the equations of motion numerically and then the
system moves along the trajectory in the phase space determined by such equations.
Generally, both static physical quantities and dynamic phenomena could be evaluated by
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molecular dynamics, including the transport of heat which will discussed in this thesis
later.

In molecular dynamics calculation, the trajectory that the system moves along is computed
by solving Hamilton’s equation

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, (2.4.10)

where H is the Hamiltonian which is simply the total energy of the system expressed as
a function of positions and momenta, i.e. a set of generalized coordinates p and their
conjugate ones q. The Hamilton’s equations are solved numerically using a particular
numerical integrator or solver for the equations of motion with a set of initial conditions,
for example, the Verlet algorithm that as a finite difference method will be discussed in
section 2.4.1. In addition, as it has been shown in Eq.(2.4.8, 2.4.9), the microcanonical
phase space averages can be replaced by time averages over the trajectory according to

⟨a⟩ =
∫︁
dxa(x)δ(H(x)− E)∫︁
dxδ(H(x)− E)

= lim
T →∞

1

T

∫︂ T

0
dta (xt) ≡ ā. (2.4.11)

Then phase space vectors at discrete times are generated from the initial condition x0 by
the integrator with the form xn∆t that are multiples of a fundamental time discretization
parameter, ∆t, known as the time step. Thus, the ensemble average of any property a can
be related to the discretized time average

A = ⟨a⟩ = 1

M

M∑︂
n=1

a (xn∆t) (2.4.12)

2.4.1. Verlet algorithms

The Verlet algorithm and further the velocity Verlet algorithm basically integrate the
equations of motion to find the new position and momentum from the previous ones, and
sample a sufficient number of microstates to obtain reliable averages. It starts from the
Taylor expansion of the position of a particle at a time t+∆t in its position, velocity and
acceleration

rI(t+∆t) ≈ rI(t) + ∆tṙI(t) +
1

2
∆t2r̈I(t). (2.4.13)
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Substituting the second order in ∆ t based on Newton’s equation in Eq.(2.4.2) gives

rI(t+∆t) ≈ rI(t) + ∆tvI(t) +
∆t2

2MI
FI(t). (2.4.14)

Similarly,

rI(t−∆t) = rI(t)−∆tvI(t) +
∆t2

2MI
FI(t). (2.4.15)

The addition of Eq.(2.4.14) and Eq.(2.4.15) gives the numerical solver known as the Verlet
algorithm

rI(t+∆t) = 2rI(t)− rI(t−∆t) +
∆t2

mI
FI(t). (2.4.16)

However, the Verlet algorithm does not explicitly evolve the velocities which can be further
introduced by a variant of the Verlet integrator, called the velocity Verlet algorithm:

vI(t+∆t) = vI(t) +
∆t

2MI
[FI(t) + FI(t+∆t)] (2.4.17)

With Eq.(2.4.16) and Eq.(2.4.17), the position and momentum of the particle can be
obtained simultaneously. Time step limits the length of the MD trajectory and the simula-
tion and it can cause a MD simulation to become unstable with Energy increasing rapidly
with time. In practice, for numerical stability and accuracy in conserving the energy, one
typically needs to pick a time step that is at least one order of magnitude lower than the
fastest time scale in the system. For example, if the periodicity for bond vibration is 10 fs,
then the MD time step can be chosen as 0.5-1.0 fs.

2.4.2. Ensembles

Molecular dynamics is embodied with statistical mechanics for predicting macroscopic ther-
modynamic and dynamic observables. The statistical ensemble is an imaginary collection
of systems described by the same Hamiltonian with each system in a unique microscopic
state at any given instant in time. Molecular dynamics defined in Eqs.(2.4.5, 2.4.6, 2.4.7)
is confined within micro-canonical ensemble where the systems hold fixed energy, volume
and particle number. In such case, the so-called Ergodic hypothesis dominates, which
means all accessible states share the same probability in the course of time, as shown in
Eq.(2.4.18). H(X) represents the Hamiltonian for any point X in phase space and delta
function make sure only the states with energy E will be considered as consistent as NVE
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ensemble definition. The discrete sum
∑︁

{X|E} denotes a sum over all states X with a fixed
energy E.

⟨A⟩ =
∑︁

{X|E}A(X)∑︁
{X|E}

=

∑︁
X A(X)δ[H(X)− E]∑︁

X δ[H(X)− E]
= Ā. (2.4.18)

In addition, MD can be extended to canonical ensembles where other physical quantities,
namely, number of particles, volume and temperature are fixed or whose average value
is controlled externally. Specifically, the temperature as a system parameter could be
manipulated by coupling the system to a heat bath. The canonical ensemble average reads
as

⟨A⟩NV T =
1

N !Z

∑︂
X

A(X)e−βH(X) (2.4.19)

with the partition function describing measuring the number of microscopic states in the
phase space accessible within a given ensemble

Z(N,V, T ) =
1

N !

∑︂
X

e−βH(X). (2.4.20)

Here β is the Boltzmann factor and N is the number of particles. In addition, the virial
theorem bridges the ensemble averages and macroscopic thermodynamic observables,
stating that, ⟨︃

xi
∂H
∂xj

⟩︃
= kTδij , (2.4.21)

where the average is taken with respect to a microcanonical ensemble. If xi is picked
as momentum pi and H =

∑︁
i p

2
i /2mi + U (r1, . . . , rN ), then the kinetic energy of each

particle at equilibrium must be 1
2kBT. Summing up all N particles gives the Equipartition

Theorem
3N∑︂
i=1

⟨︃
p2i
2mi

⟩︃
=

3N∑︂
i=1

⟨︃
1

2
miv

2
i

⟩︃
=

3

2
NkBT (2.4.22)

It should be noted that the canonical ensemble average is more useful when comparing to
measurements, since the temperature can be controlled in the experiment.

2.4.3. Langevin thermostat

Dealing with physics or chemistry problem often requires to consider the environment that
particles or molecules live in, which is referred to as bath. The Hamiltonian for generalized
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coordinates r and its conjugate momentum p for a classic system in the absence of the
bath can be written simply as

H(r, p) =
p2

2µ
+ V (r), (2.4.23)

where µ is the mass associated with r and V(r) is the potential independent of the bath. If
the system is coupled to the bath, the total potential is

U (r, y1, . . . , yn) = V (r) + Ubath (r, y1, . . . , yn) , (2.4.24)

where r is the system coordinate and y is the bath coordinate, andUbath involves both the
coupling terms between the system and the bath, and harmonic potential terms describing
the interactions among the bath. A real bath is often characterized by a continuous
distribution of frequencies I(ω) called the spectral density or density of states obtained
by taking the Fourier transform of the velocity autocorrelation function. This continuous
distribution of frequencies can be approximated by the sum of harmonic oscillator spectral
functions since the motion of the real bath is dominated by small displacements from an
equilibrium point described by discrete frequencies. The full Hamiltonian in the harmonic
bath approximation can thus be written as

H =
p2

2µ
+ V (r) +

n∑︂
α=1

[︄
p2α
2mα

+
1

2

n∑︂
α=1

mαω
2
αx

2
α

]︄
+ r

n∑︂
α=1

gαxα, (2.4.25)

where x is a linear normal-mode transformation of the coordinates y, ω is the bath frequency
and the last term represents the bilinear coupling to the coordinate r.

The generalized Langevin equation(GLE) can be derived from the equation of motion
generated by the above full Hamiltonian, shown as

µr̈ = −dW

dr
−
∫︂ t

0
dτ ṙ(τ)ζ(t− τ) +R(t), (2.4.26)

with the dynamic friction kernel ζ(t)

ζ(t) =
∑︂
α

g2α
mαω2

α

cosωαt, (2.4.27)

the random force

R(t) = −
∑︂
α

gα

[︃(︃
xα(0) +

gα
mαω2

α

r(0)

)︃
cosωαt+

pα(0)

mαωα
sinωαt

]︃
, (2.4.28)
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and the potential of mean force acting on the system coordinate W(r)

W (r) = V (r)−
∑︂
α

g2α
mαω2

α

r2. (2.4.29)

Simulations based on Langevin equation require much less computational effort compared
to explicitly considering a bath. In addition, the Langevin equation provides a simple and
efficient thermostat for generating the canonical samples which can be used in molecular
dynamics. In order to do the numerical integration, the Langevin equation can be written
as

µr̈(t) = F (r(t))− γµṙ(t) +
√︁
2kTγµη(t), (2.4.30)

where
γ = ζ0/µ, R(t) =

√︁
2kTγµη(t) (2.4.31)

The second term at the right side of the equation represents the friction kernel, where
γ has a convolution integral form due to the fact that the bath requires a finite time to
respond to any fluctuation in the motion of the system and that the force that the bath
exerts on the system depends on the prior motion of the system. The last term is the
noise term containing a delta function, denoted as η, to ensure that the force at a time t is
uncorrelated with the force at any other time.

Similar to Verlet integrator, the solver for the Langevin equation can be written as

r(t+∆t) = r(t) + ∆tv(t) +A(t)

v(t+∆t) = v(t) +
1

2
∆t[f(r(t+∆t)) + f(r(t))]

−∆tγv(t) + σ
√
∆tξ(t)− γA(t).

(2.4.32)

Here ∆t is set as small time interval and

A(t) =
1

2
∆t2(f(r(t))− γv(t)) + σ∆t3/2

(︃
1

2
ξ(t) +

1

2
√
3
θ(t)

)︃
σ =

√︁
2kTγ/µ

f(r) = F (r)/µ.

It can be noted that the integrator in Eq.(2.4.32) will be reduced to the velocity Verlet
integrator in Eq.(2.4.17, 2.4.16) when γ = 0 and σ = 0, which is the limit of no bath
coupling.
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The evaluation of the observable is necessary to provide an estimate of the thermodynamic
expectation value within representative samples, resulting in the form

⟨A⟩ = lim
t0→∞

1

t0

∫︂ t0

0
dtA(R(t),P(t)). (2.4.33)

Here, A(R(t), P(t)) denotes the instantaneous value of the observable A obtained for the
phase-space configuration R(t), P(t) evaluated with the full many-body Hamiltonian H(R,
p).

Harmonic sampling provides a way to create samples under the harmonic approximation,
starting from replacing the many-body potential shown in the left of Fig. (2.3) by

V(2)(R) =
1

2

∑︂
I,J

uI · ΦIJuJ , (2.4.34)

where ΦIJ denotes force constant matrices and uI represents atomic displacements. Thus,
Newton’s equation of motion can be written as⎛⎜⎜⎜⎝

M1ü1
M2ü2

...
MN üN

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Φ11 Φ12 · · · Φ1N

Φ21 Φ22 · · · Φ2N
...

... . . . ...
ΦN1 ΦN2 · · · ΦNN

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u1
u2
...
uN

⎞⎟⎟⎟⎠ (2.4.35)

The analytical solution to this equation can be expressed as

uI(t) =
1√
MI

∑︂
s

esIAs sin (ωst+ φs) (2.4.36)

with the mass-reduced dynamical matrix

DIJ = ΦIJ/
√︁
MIMJ . (2.4.37)

Here, esI , s, ωs denotes the eigenvector of the dynamical matrix corresponding to atom I,
phonon mode and frequency respectively, which is similar to the expression in Sec. (2.3.1)
related to the lattice dynamics model in harmonic approximation. The amplitudes As

and phases φs are fixed by the initial condition R(t0),P(t0). In thermal equilibrium, the
average kinetic energy of each mode is 1

2kBT and thus

⟨As⟩ =

√︄
ℏ
ωs

(︃
ns (ωs, T ) +

1

2

)︃
kBT≫ℏωs−→

√
2kBT

ωs
. (2.4.38)
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If If As = ⟨As⟩ for all s, the energy of each mode is exactly kBT . However, in order to
describe the thermal fluctuation implied by the sine equation in Eq. (2.4.36), a normally
random distribution ζs is utilized[51]

ζs =

∫︂ Es

0

1

kBT
e−E/kBTdE. (2.4.39)

with energy of each modeEs. Therefore, in equilibrium at the temperature T, the harmonic
Cartesian positions and velocities are

uI =

√︃
2kBT

MI

∑︂
s

1

ωs

√︁
− ln (1− ζs) cos (ωst+ ϕs) esI (2.4.40)

and

u̇I = −
√︃

2kBT

MI

∑︂
s

√︁
− ln (1− ζs) sin (ωst+ ϕs) eIs. (2.4.41)

In practice, the force constants is a condensed representation in
(︁
Nprim, N, 3, 3

)︁
shape,

where Nprim is the number of atoms in the primitive cell and N is the number of atoms
in the supercell. For creating samples, they need to be mapped to a full (3N × 3N)
shape. This method can not only estimate the thermodynamic expectation values of the
observables in interest by approximating the ensemble average but also contribute to
pre-thermalizing the system in MD simulations given the distribution of displacements.

2.4.4. Anharmonicity

It has been mentioned in previous sections that the anharmonic lattice vibrations play
pivotal roles in condensed matter, since they affect how the atoms interact and conduct
heat, which can not be explained by the harmonic approximation.[52] The vibrational
thermal transport can be assessed via either perturbation theory in Sec. (2.3.3) by
expanding the potential energy to third or fourth order in the atomic displacements and
solving phonon Boltzman transport equation(BTE), or ab initio Green-Kubo calculation
which will be discussed in next section. In order to define the anharmonicity, the full
potential in the many-body Hamiltonian within Born-Oppenheimer approximation defined
in Eq. (2.4.1) can be split into two parts, one is for harmonic potential V(2) and the second
one is for all other anharmonic effects VA(R).[53]

V(R) = V(2)(R) + VA(R). (2.4.42)
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In addition, the forces can therefore be split into harmonic and anharmonic contributions
as well due to linearity of the differential when applied in Newton’s equation.

FI = F
(2)
I + FA

I (2.4.43)

Figure 2.3.: Sketch of a one-dimensional potential-energy surface and the force, both with harmonic and
anharmonic contributions. Fig. from Ref. [54]

The anharmonicity is measured in terms of the forces but not the potential energy since
the force can be resolved into each atom to give a clear microscopic insight. For each
configuration R there will be 3N force components (F1, . . . ,FN ). The anharmonicity is
quantitatively measured by a so-called anharmonicity score σA defined as

σA(T ) =

⌜⃓⃓⃓
⎷⃓
∑︁

I,α

⟨︃(︂
FA
I,α

)︂2⟩︃
T∑︁

I,α

⟨︂
(FI,α)

2
⟩︂
T

. (2.4.44)

Here, FI,α is the force obtained from ab initioMD on atom I along the a Cartesian direction
α. ⟨·⟩T represents thermodynamic averaging over a selected ensemble at temperature T.
FA
I,α is the anharmonic component of the atomic force, which is given by the difference

between FI,α and its harmonic component F (2)
I,α. Essentially, σA measures the standard

deviation of the distribution of anharmonic force components σ[FA]T at a given tempera-
ture normalized by the standard deviation of the actual force distribution σ[F ]T via ab
initio MD with σ[F ]T being defined as

σ[F ]T =

√︄
1

3N

∑︂
I,α

⟨︂
F 2
I,α

⟩︂
T
. (2.4.45)

In order to better elucidate the concepts and give a intuitive impression on the anhar-
monicity score, two prototypical materials are taken as an example. One is the well-known
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harmonic material Si and the second one is an anharmonic perovskite material KCaF3.
Both of them are sampled by ab initio molecular dynamics simulations at 300 K. The joint
normalized distributions between total force F and anharmonic force FA are shown in Fig.
(2.4) which have been normalised by the standard deviation of DFT forces bounded be-
tween the horizontal dashed lines. The color saturation increases linearly from zero to the
maximum value. It can be noticed that the distribution of anharmonic force components
for the perovskite KCaF3 is more than twice as broad as that for the silicon, indicated by
the width of the horizontal dash lines. The anharmonicity score σA can be interpreted as
the contributions of anharmonic forces to the total forces. In this sense, 36 % of the forces
stem from anharmonic contributions in KCaF3, and 15% in silicon, with σAKCaF3

= 0.36

and σASi = 0.15.

Figure 2.4.: Normalized anharmonic force components versus normalized force components. Dashed
horizontal lines: Width of the distribution estimated from standard deviation. Individual dots

are force components sampled during an ab initio MD simulations. Fig. from Ref. [54].

38



2.5. The Green-Kubo calculation method

The above discussion in Sec. (2.4.3) and Sec. (2.4.2) has been restricted to equilibrium
ensembles, including microcanonical ensemble and canonical ensembles which are gen-
erated by coupling a physical system to a heat bath. The equilibrium ensembles allow
a wide variety of thermodynamic and structural properties of systems to be computed.
Apart from that, the linear response theory guarantees that some dynamic or transport
properties for example, shear viscosity coefficients and thermal conductivity, can also be
calculated without a time-dependent perturbation.

2.5.1. Linear response theory

The goal of response theory is to figure out how a system reacts to external influences, for
instance, applied electric and magnetic fields which are time-dependent. This response can
be described by the expectation value of a phase-space observable in a system characterized
by the many-body Hamiltonian H0(Γ) in company with an external perturbation H′(Γ, t)
so as

H(Γ, t) = H0(Γ) +H′(Γ, t). (2.5.1)

with the perturbation
H′(Γ, t) = A(Γ)F (t) (2.5.2)

Here, A(Γ) is an operator which now represents the observables of the system, and F (t)
is an explicitly time-dependent force function, i.e. sources. Now, we will take a look at a
general class of driven classical systems and their corresponding phase space distributions.
Consider a classical system described by 3N generalized coordinates qi and their conjugate
generalized momenta qi, where the weak driving force is assumed as small perturbation
to the system. The Hamiltonian’s equations of motion for the system is

q̇i =
∂H
∂pi

+ Ci(q, p)Fe(t)

ṗi = −∂H
∂qi

+Di(q, p)Fe(t),

(2.5.3)

whereCi(q, p) andDi(q, p) are phase space functions determined by the particular external
perturbation. In addition, the Hamiltonian’s equations of motion is imposed to satisfy the
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incompressibility condition
3N∑︂
i=1

[︃
∂q̇i
∂qi

+
∂ṗi
∂pi

]︃
= 0. (2.5.4)

Substituting Eq. (2.5.3) into Eq. (2.5.4) leads to a restriction on the choice of the phase
space functions

3N∑︂
i=1

[︃
∂Ci

∂qi
+
∂Di

∂pi

]︃
= 0. (2.5.5)

In addition, when the equations of motion have zero phase space compressibility, the
phase space distribution function f(x, t) satisfies the Liouville equation

∂

∂t
f(x, t) + iLf(x, t) = 0, iL = ẋ · ∇x (2.5.6)

where iL is the Liouville operator. When the external perturbation is small, we assume
that the solution f(x, t) can be written in the form

f(x, t) = f0(H(x)) + ∆f(x, t). (2.5.7)

Here the Hamiltonian H(x) is equal to H(p, q) and f0(H(x) is the equilibrium phase space
distribution function generated by the corresponding unperturbed system (Ci = Di = 0)
so that it satisfy the equilibrium Liouville equation

iL0f0(H(x)) = 0, (2.5.8)

where iL0 is the unperturbed Liouville operator. Note that the Liouville operator can also
be written as a perturbation form

iL = ẋ · ∇x = (ẋ0 +∆ẋ(t)) · ∇x = iL0 + i∆L(t). (2.5.9)

Thus, the Liouville equation becomes

∂

∂t
(f0(H(x)) + ∆f(x, t)) + (iL0 + i∆L(t)) (f0(H(x)) + ∆f(x, t)) = 0. (2.5.10)

In the above equation, the second order term i∆L∆f(x, t) is neglected if driving force
terms in Eq. (2.5.3) constitute a small perturbation. This approximation is the core of
linear response theory. Within linear response theory, the Liouville equation Eq. (2.5.10)
is reduced to (︃

∂

∂t
+ iL0

)︃
∆f(x, t) = −i∆L(t)f0(H(x)). (2.5.11)
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It is a simple first order inhomogeneous differential equation that can be solved using the
unperturbed classical propagator expiL0t as an integrating factor. Using the normalization
condition as an ansatz ∫︂

dxf(x, t) = 1, (2.5.12)

gives the ensemble average of any function a(x), expressed as

⟨a⟩t =
∫︂

dxa(x)f(x, t)

=

∫︂
dxa(x)f0(H(x)) +

∫︂
dxa(x)∆f(x, t)

= ⟨a⟩+
∫︂

dxa(x)∆f(x, t)

= A(t).

(2.5.13)

Here, ⟨a⟩t is the average of a(x) in the unperturbed ensemble described by f0(H(x)), and
the notation A(t) = ⟨a⟩t indicates an average in the nonequilibrium ensemble correspond-
ing to the time-dependent property A(t).

A(t) = ⟨a⟩ − β

∫︂ t

0
dsFe(s)

∫︂
dxf0(H(x))a (xt−s(x)) j(x), (2.5.14)

where j(x) is the dissipative flux

j(x) = −
3N∑︂
i=1

[︃
Di(x)

∂H
∂pi

+ Ci(x)
∂H
∂qi

]︃
(2.5.15)

In the second term in Eq. (2.5.14), it shows that the Hamilton’s equations of motion
evolves from each initial point x with phase space function a(x) to new phase space point
xt−s with a(xt−s). Then an average of a (xt−s(x)) j(x) is taken over the phase space with
respect to the unperturbed distribution function f0(H(x)) of all possible initial conditions.
Finally, we integrate the result multiplied by Fe(s) over s from 0 to t, which results in the
equilibrium time correlation function∫︂

dxf0(H(x))a (xt−s(x)) j(x) ≡ ⟨a(t− s)j(0)⟩, (2.5.16)

with the right hand side as a commonly used notation for a time correlation function,
which in turn gives a more compact form of Eq. (2.5.14)

A(t) = ⟨a⟩t = ⟨a⟩ − β

∫︂ t

0
dsFe(s)⟨a(t− s)j(0)⟩ (2.5.17)
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2.5.2. Equilibrium time correlation functions

The equilibrium time correlation function CAB(t) between two observables A and B is
defined as

CAB(t) = ⟨a(0)b(t)⟩ =
∫︂

dxf(x)a(x)eiLtb(x)

=

∫︂
dxf(x)a(x)b (xt(x)) ,

(2.5.18)

corresponding to phase space functions a(x) and b(x), with respect to a normalized
equilibrium distribution function f(x) and dynamics generated by a Liouville operator iL.
It can be inspected that eiLt can act as either to the right as a forward propagator or to
the left as a backward propagator, and thus

⟨A(0)B(t)⟩ = ⟨A(−t)B(0)⟩. (2.5.19)

At the initial condition, i.e. t=0,

CAB(0) = ⟨AB⟩ =
∫︂

dxf(x)a(x)b(x). (2.5.20)

The influence of each initial condition on the resultant trajectories generated by eiLt
rapidly becomes negligible as time proceeds, which means there is a characteristic time,
called the correlation time, over which the trajectory xt(x) appears to be particular to a
given choice of x and beyond which xt(x) is essentially indistinguishable from any other
trajectory.

In order to see what the existence of a correlation time implies for a correlation function,
consider the special case a(x) = b(x). The time correlation function turns to be the
so-called autocorrelation function

CAA(t) = ⟨a(0)a(t)⟩ =
∫︂

dxf(x)a(x)a (xt(x)) . (2.5.21)

For very short times, a(xt(x) and a(x) are not very different, hence they are highly
correlated while for times longer than the correlation time, the trajectory loses memory
of its initial condition, and a(xt(x)) and a(x) become uncorrelated.
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2.5.3. Heat flux autocorrelation function

Equilibrium molecular dynamics (EMD) calculations are performed using Green-Kubo
formalism which relates transport quantities to the duration of fluctuations in a microscopic
state of the system. The underlying principle is fluctuation-dissipation theorem which
consider the small local fluctuations dissipation as the material’s feedback to a stimulus.
Mathematically this is achieved by integrating the current autocorrelation function,

κ =
V

3kBT 2

∫︂ ∞

0
⟨J(t)J(t+ τ)⟩dτ (2.5.22)

where kB is Boltzmann constant, T is the temperature, V is the volume of the simulated re-
gion, J is the current that drives transport property κ. ⟨J(t)J(t+ τ)⟩ is the non-normalized
heat current autocorrelation function(HCACF). Although the equilibrium molecular dy-
namics approach suffers from size artifacts, the use of periodic boundary conditions in
EMD allows for a smaller system size. Even so, fully converging the autocorrelation func-
tion requires very long simulation time and often a compromise has to be made between
including the contribution of slow processes and introducing a random error. To accelerate
this process, a cutoff time tc is chosen to avoid integrating parts of the autocorrelation
function after it has effectively decayed, which in turn introduce the noises.

The oscillatory behavior of the autocorrelation function(ACF) can be observed for a system
in equilibrium, where the average current of any property is zero, and the ACF is expected
to decay to zero given sufficient time. In addition, the integral of ACF contains large
oscillations which is shown in Fig.(2.5) where an example of decaying HCACFs is take from
graphite and the curves that rise to a plateau are integrals. The rapid decay corresponds
to the contribution from short wavelength phonons to thermal conductivity, while the
slower decay corresponds to the dominant contribution to thermal conductivity from long
wavelength phonons.[55]
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Figure 2.5.: HCACFs plotted along side their integrals computed from nine separate trajectories for
perfectly crystalline, and periodically contiguous block of graphite with 10648 atoms. Fig.

from Ref.[56]

2.5.4. Heat flux

In this part, the heat flux expression as a microscopic dynamical variable is derived step by
step. First, a general microscopic dynamical variable and its spatial Fourier components
are defined respectively as

A(r, t) =
N∑︂
i=1

ai(t)δ [r− ri(t)] , (2.5.23)

Ak(t) =

∫︂
A(r, t) exp(−ik · r)dr =

N∑︂
i=1

ai(t) exp [−ik · ri(t)] . (2.5.24)

Here, the ai(t) is some physical quantity such as the mass, velocity or energy of particle i
and ri the time-dependent particle coordinate. A conservedmicroscopic dynamical variable

44



satisfies a continuity equation, so that

∂A(r, t)

∂t
+∇ · jA(r, t) = 0 (2.5.25)

where jA is the current associated with the variable A. Similarly, the corresponding
continuity equation for the Fourier components of A is

∂Ak(t)

∂t
+ ik · jAk (t) = 0, (2.5.26)

which shows that spontaneous fluctuations in a conserved variable decay very slowly at
long wavelengths. The time-dependent, microscopic particle density corresponds to the
case when ai = 1, i.e. a conserved local variable, written as

ρ(r, t) =
N∑︂
i=1

δ [r− ri(t)] . (2.5.27)

Then the associated particle current is

j(r, t) =

N∑︂
i=1

ṙi(t)δ [r− ri(t)] , (2.5.28)

with Fourier component

jk(t) =
N∑︂
i=1

ṙi(t) exp [−ik · ri(t)] . (2.5.29)

Each Fourier component may be separated into longitudinal (j∥) and transverse (j⊥) parts,
the two parts being parallel and perpendicular, respectively, to the wavevector k.

Now the total energy of the system E and its associated energy density e are taken as an
example for the microscopic dynamical variable. Firstly the energy density satisfies the
continuity equation as

ė(r) = −∇ · j(r), (2.5.30)

and its Fourier component will be

ė(k) = −ik · j(k). (2.5.31)
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Multiplying the Eq. (2.5.31) by ik in both sides and considering the orthogonality of j
lead to the expression for the longitudinal current

j∥(q) = i
q

q2
ė(q). (2.5.32)

The spatially average over the above longitudinal current with 1
V

∫︁
V d3r results in the

heat flux
J =

1

V

∫︂
d3rj∥(r). (2.5.33)

Finally the heat flux is given as the time derivative of the energy density

J(t) =
1

V

∫︂
d3rrė(r, t), (2.5.34)

since the integral over the infinite volume in real space equals to the long wavelength limit
of the current in reciprocal space. If the energy density relies on each atomic contribution,
it can be then expressed as

e(r, t) =
∑︂
I

EI(t)δ (r−RI(t)) , (2.5.35)

followed by the heat flux

J(t) =
1

V

d

dt

∑︂
I

EI(t)RI(t) =
1

V

∑︂
I

ĖI(t)RI(t) +
1

V

∑︂
I

EI(t)ṘI(t). (2.5.36)

Here the last equation means that the heat flux can be split into two parts, namely the virial
or kinetic current and the convective or potential current.[57] Typically the contributions
from convection can be neglected in solids due to the results shown in the work by Kinaci
et. al[58] that the heat current considering only the potential current(black solid lines)
presents nearly the same result with the one includes kinetic and potential contribution.
In fact, the convection contribution to thermal conductivity is much lower compared to
the virial flux in a bulk non-convective solid.[59] This result can be partly explained
intuitively that the intermolecular forces in solids are strong to hold the molecular at
fixed position and there is no relative motion between the molecules while the convection
current requires the movement of the molecules either by external force or by density
differences. However, this convective current term dominates in liquid or gas situation,
where diffusion directly contributes to the convective heat flux.[55]

46



Figure 2.6.: Heat current obtained from analytical, (black) solid line, and numerical, (green) dashed line,
results from non-convective solid. (Grey) Dotted line represents numerical result from the

combination of convective and virial contributions. Fig. from Ref. [58]

2.5.5. Thermal conductivity via ab initio Green-Kubo calculation

Thermal conductivity describes the capability of a material to conduct heat. When a
temperature gradient ∇T (R) is present, a heat flux spontaneously develops to move the
system back toward thermodynamic equilibrium. This dynamic process is described by
Fourier’s law

J(R) = −κ(T, p) · ∇T (R) (2.5.37)

The vibrational motion of the atoms, i.e. phonons, mostly contributes to the thermal
conductivity in insulators and semiconductors. The transport coefficient can also be
expressed by Green–Kubo relation in terms of the integral of an equilibrium time correlation
function, which can be easily computed within a molecular dynamics simulation.[60] The
thermal conductivity tensor at temperature T can be calculated by means of Green-Kubo
calculation as an ensemble average, shown as

καβ(T ) =

∫︂
dΓκαβ(Γ)fT (Γ), (2.5.38)

where the statistical weight for canonical ensemble is given by the Boltzmann factor

fT (Γ) =
1

Z
e
− 1

kBT
H(Γ)

. (2.5.39)

Here Γ represents phase space configurations and α, β denote the Cartesian components
of the tensor. In order to evaluate the thermal conductivity tensor in finite simulations
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the integrals need to be discretized and truncated to finite domains and some start
configurations Γi

0 from above NVT calculations are picked up.

καβ(T ) ≈ 1

M

M∑︂
i=1

καβ
(︁
Γi
0

)︁
(2.5.40)

Then the NVE MD calculation generates the trajectory Γi
t and the heat flux Jα

(︁
Γi
t

)︁
for

each start configuration. After computing the thermal conductivity for each trajectory, the
final value is given by the mean of the individual trajectories indicated in Eq. (2.5.40). The
statistical error due to the finite ensemble average is estimated by the standard deviation
of the mean

∆καβ(T ) =
1√
N

√︄
1

N

∑︂
i

(︁
καβ(T )− καβ

(︁
Γi
0

)︁)︁2
. (2.5.41)
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3. Toy model calculation

To better explain and exemplify the various steps in a Green-Kubo calculation, the one-
dimensional CH2 chain, shown in Fig. (3.1), is chosen as toy model. We emphasize that
these are purely pedagogical calculations that do not aim at realistic predictions, since
such an infinite 1D CH2 chain hardly exists in reality. In a first step, we calculate its
phonon band structure and anharmonicity. The structure is studied at the LDA level of
theory using the Perdew-Wang LDA functional and light-default basis set in the all-electron,
full potential code FHI-aims[20]. The supercell size is (1× 1× 2), containing 12 atoms.
The starting structure is given by the space group Pmma(51) with the lattice constant 3Å.
The MD simulations are performed via FHI-vibes[21, 22]. Firstly, the k grid and basis set
convergence in the DFT calculations for electrons are inspected, where a denser grid leads
to a more resolved band structure at the expenses of the increasing computational cost
compared with a coarser grid. As it is discussed in Sec. (2.2.4), the basis set, including
light, intermediate and so on, controls how the initial radial functions are chosen to do
the calculation. Then the phonon bandstructure and its convergence on the supercell size
are inspected with the phonopy package[14]. In addition, its anharmonicity is calculated
by molecular dynamics(MD) using the anharmonicity introduced in Sec.(2.4.4) . Finally,
the thermal conductivity is determined by the Green-Kubo method and the phono3py
package[40], respectively.

Figure 3.1.: Crystal structure of the fictitious one dimensional CH2 chain projected onto the xy
plane(middle) where the z coordinate is along the chain(right).
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3.1. Relaxation

Since the structure is a one dimensional chain, only the lattice vector along the chain,
here in z direction can change. In this case, the relaxation is constrained accordingly. The
BFGS optimization is performed utilizing the functional pw-lda until forces and stresses
are converged below 1meV/Å. After the energy converged in the relaxation, the structure
is still in the space group Pmma(51) but the new lattice constants turns to be 2.526 Å for
the lattice.

Energy convergency with basis set and k grid

As discussed in Sec. (2.2.4), the basis set is related to the how the Kohn-Sham eigenfunc-
tions are expanded in terms of numeric atom-centered orbitals(NAO). In addition, the
integration of periodic functions over the entire Brillouin zone(BZ) can be replaced by
the calculation at a selected set of points in BZ, i.e, a k grid, which significantly saves
computational effort. It was presented by Monkhorst and Pack[61] that a rectangular
grid with the form (Mx ×My ×Mz) can be used to sample the Brillouin zone. The choice
of both the basis set and the k grid mesh relies on the convergence of the desired quantity
to be predicted or calculated. In this CH2-case, the k grid mesh only needs to cover the z
direction since we are dealing with a one dimensional periodicity.

From the below Fig. (3.2), the final energy is slightly lower for both light and intermediate
basis for all k grids, which means the light basis set is already enough to achievemeV -level
total energy convergence. In addition, both the energy and lattice constant qualitatively
converge with k grid (1× 1× 4). Thus, for the following phonon calculation, the k grid
(1× 1× 4) will be inspected at first.
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Figure 3.2.: Energy and lattice constant convergence with k grid and basis set for a one dimensional CH2

chain.

3.2. Phonon calculation

The accurately relaxed structure obtained from the previous geometry optimization will
be used for the phonon calculations. As shown in section 2.3.1, the displacement around
the equilibrium position and the supercell size affects the solutions to the equation of
motion shown in Eq. (2.3.6) and the phonon spectrum. When computing the real-space
dynamical matrix, a supercell is first constructed by repeating the unit cell with an integer
multiple along the directions of the primitive lattice vectors. Second, the finite-difference
derivative is performed via

DIµJν =
1√

MIMJ

∂2Etot(R)

∂uIν∂uJµ

≈ 1√
MIMJ

FJµ (+∆uIν)− FJµ (−∆uIν)

2∆uIν
.

(3.2.1)

To this end, one calculates the forces in the entire supercell, while only displacing the
atoms in the central unit cell. As schematically shown in Fig. (3.3), in which a unit cell is
repeated 5 times horizontally and vertically, the forces can be expected to become zero
outside a certain range (ellipsoidal area). This is where supercell convergence is achieved.
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Figure 3.3.: Schematic illustration of the supercell method. Fig from Ref. [62]

Apart from the supercell size, another important numerical setting often called displace-
ment ∆u needs to be considered. In Sec. (2.3), under the harmonic approximation, the
atomic nucleus is displaced within a short range around its equilibrium, which means
the displacement should not be too high. This setting is controlled in FHI-vibes by the
parameter "displacement". The phonon band structure is shown in Fig. (3.4) where
the right figure represents a smaller displacement compared to the left one, while other
numerical settings remain the same. The resulted phonon band structure shows that the
calculation has already converged with the supercell (1 × 1 × 2). There are four lines
starting from Γ and each line represent a degree of freedom. In this case there are four
acoustic modes corresponding to the translation in x, y, z axis and one molecular rotation,
respectively. The zero frequency means that the excitation does not consume energy and
the tiny negative frequency around the Γ point in the left figure means that the eigenvalue
in Eq. (2.3.6) is imaginary and pictorially, there exists an energy saddle point. Since only
the z axis periodicity is kept, the molecular can also rotate around the z axis without
costing energy and this rotation is exactly the source of the fourth zero frequency at Γ.
Although a smaller displacement corrects the saddle point, i.e. negative frequency, ∆u
needs to be large enough so that the finite difference in Eq. (3.2.1) is not dominated by
numerical noise.
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Figure 3.4.: The phonon band structures with displacement 0.01(left) and 0.001(right) for the C2H4 chain.
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Figure 3.5.: Free energy and entropy of CH2 and the respective specific heat Cv computed in the harmonic
approximation .
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3.2.1. Thermal conductivity by lattice dynamics method

The thermal conductivity calculation using the lattice dynamics method is implemented
in the phono3py package[40]. It determines the third order force constants via

Ψαβγ
IJK =

∂3E

∂Rα
I ∂R

β
J∂R

γ
K

=
∂2Fα

I

∂Rβ
J∂R

γ
K

=
∂Φαβ

IJ

∂Rγ
K

≈
Φαβ
IJ

(︁
δRγ

K

)︁
− Φαβ

IJ

δRγ
K

, (3.2.2)

by a finite difference approach. As in the previous phonon calculation, a (1×1×2) supercell
was used to compute the third order constant and then a (45×45×45) qmesh was used to
compute the Fourier transformed third order force constant defined in Eq. (2.3.22). The
imaginary part of the self-energy Γs and phonon lifetime τ can be subsequently obtained
by Eq. (2.3.23, 2.3.25). Eventually, the diagonal entries of the lattice thermal conductivity
tensor can be calculated by Eq. (2.3.26)

κ =
1

NV0

∑︂
s

Csvs ⊗ vsτ
SMRT
s , (3.2.3)

with the phonon group velocity vs and the specific heat capacityCs conveniently calculated
by Eq.(2.3.28) and Eq. (2.3.29) in the previous phonon calculations. Due to the one
dimensional structure of our CH2 model, diagonal entries of the thermal conductivity
tensor are reduced to only one component, i.e. κ = κzz. The result is given in Fig. (3.6)
showing that κ decreases dramatically between 100K and 150K and then saturates at
250K with the value 0.661W/mK. Additionally, in molecular crystals with the presence
of many H atoms, Bose-Einstein statistics, and particularly zero-point motion, should be
specifically accounted for. In this work, nuclear quantum effects of the atoms are rigorously
incorporated into the calculation by the Bose-Einstein distribution (Eq. (2.3.22)).
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Figure 3.6.: Thermal conductivity calculated with a supercell (1x1x2) for C2H4.

3.3. Molecular dynamic calculation

In order to calculate the thermal conductivity by the Green-Kubo method described in Sec.
(2.5.5), the trajectory has to be created within NVT ensemble generated by a Langevin
thermostat starting from some initial configuration. This step is called thermalization.
In this step, a simulation at non-constant energy is performed by coupling the system to
a thermal bath which must be incorporated explicitly into the Langevin equation. The
Langevin equation features perturbation of the nuclei induced by a velocity-dependent
friction γ, and a stochastic force proportional to a white-noise kernel η(t), shown in Eq.
(2.4.30). In this part, the effects of friction parameter and temperature on the displacement
are inspected. The maximum trajectory length is set to 10 picoseconds and each time step
is 1 femtosecond which is reasonable short for this light system.

The time evolution of the temperature at 200K with the friction parameter 0.02 is shown
in Fig. (3.7), where the pre-thermalization occurs in the first 1000 time steps. Besides,
the time evolution of displacement at 200K with 4 different friction parameters is given in
Fig. (3.8). It can be noted that there exist some periodicity in the displacement, which
reflects the rotation motion of the molecular chain. In addition, a larger friction parameter
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breaks the periodicity with more zigzag features and generally lowers the displacement,
i.e, damps the motion.

Figure 3.7.: Temperature evolution of C2H4 with friction parameter 0.02 and a target temperature of 200K.

Figure 3.8.: Displacement evolution of C2H4 with friction parameter 0.01, 0.02, 0.04 and 0.06 at a target
temperature of 200K.

The time evolution governed by Langevin equation is inspected again with various target
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temperature, namely, 50K, 100K, 200K, 300K. The results are shown in Fig. (3.9) and
indicate that when the friction parameter is increased to a even higher value 0.3, the zigzag
feature is already pronounced in low temperature 50K and 100K and the displacement
periodicity increases from 2 picosecond above to 10 picosecond. This phenomenon has a
good agreement with what it implies in the above Langevin equation that larger friction
parameter represents longer time for a system to react to the force. Interestingly, when
the temperature is increased to 300K, the displacement does not go back to zero point,
which hints at the fact that the C2H4 chain starts decomposing at 300K.

Figure 3.9.: Displacement evolution at temperature 50K, 100K, 200K and 300K with friction parameter 0.3.

3.3.1. Anharmonicity quantification

As discussed in Sec. (2.4.4), the anharmonic contribution to the potential energy V(R) is
defined as

VA(R) ≡ V(R)− V(2)(R) (3.3.1)
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where the harmonic contribution at a given atomic configuration is

V(2)
(︁
R = R0 +∆R

)︁
=

1

2

∑︂
I,J

ΦI,J
αβ∆R

α
I∆R

β
J . (3.3.2)

The harmonic force constants ΦI,J
α,β are obtained at the equilibrium configuration R0. In

practice, this force constant is provided by the phonon calculation in Sec. (3.2).

ΦI,J
α,β =

∂2V
∂Rα

I ∂R
β
J

⃓⃓⃓⃓
⃓
R0

(3.3.3)

Similarly, the anharmonic contribution FA
I,α(R) to the force components FI,α(R) is defined

as
FA
I,α(R) = FI,α(R)− F

(2)
t,α (R), with

F
(2)
I,α = −

∑︂
J,β

ΦI,J
α,β∆R

β
J .

(3.3.4)

In order to estimate the strength of anharmonic effects in a material, the anharmonicity
score can be measured by

σA(T ) ≡
σ
[︁
FA
]︁
T

σ[F ]T
=

⌜⃓⃓⃓
⎷⃓
∑︁

I,α

⟨︃(︂
FA
I,α

)︂2⟩︃
T∑︁

I,α

⟨︂
(FI,α)

2
⟩︂
T

, (3.3.5)

where ⟨·⟩T represents the expectation value of a thermodynamics property at a given
temperature T:

⟨O⟩ = lim
Nt→∞

1

Nt

Nt∑︂
n

(tn) . (3.3.6)

Here, we clarify again that the FI,α(t) ≡ FI,α[R(t)] is the force component α on atom I at
time t. The force components FI,α(R) together with its anharmonic contributions FA

I,α

are calculated by Eq. (3.3.4) via an MD simulation. The anharmonicity scores at different
temperature, namely 50K, 100K and 200K are given in the left panel of Fig. (3.10). It can
be noted that the anharmonicity score is much higher than 1. However since this structure
is not physical and just a theoretical model, one should not be too shocked by this results.
In addition, the time dependence of the anharmonicity score is checked in the right panel
by truncating down every trajectory at 100K to a length of 10 ps, indicating that 40 ps
maximum time step has already given a converged results.
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Figure 3.10.: σA as a function of temperature obtained from MD simulations.

3.4. Heat conductivity

3.4.1. Heat flux autocorrelation function

The calculation of thermal conductivity via Green-Kubo method relies on the heat flux
autocorrelation function(HFACF) as it is discussed in Sec. (2.5.3) and Sec. (2.5.5). There
is no average heat flux for a system in equilibrium, which means the Heat flux autocor-
relation function(HCACF), i.e. the term inside the integral in Eq. (2.5.22), is therefore
expected to decay to zero given sufficient time. The HCACF is crucial in computing thermal
conductivity using the Green–Kubo method discussed in Sec. (2.5.3) and Sec. (2.5.5). In
this part, HCACF is computed as the simulation progresses along x,y and z respectively,
for the crystalline (1× 1× 2) supercell with the PW-LDA functional. Figures shown below
display the autocorrelation functions (left panel) and the accumulation of the averaged
HCACF(right panel) along x, y and z directions respectively. Each autocorrelation function
corresponds to a trajectory. The oscillatory decay can be inspected in all autocorrela-
tion functions but the accumulation along z direction dominates, which agrees with the
assumption that the CH2 chain lies along z direction.
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Figure 3.11.: The autocorrelation functions(left panel) and its integral(right panel) from multiple
equilibrium molecular dynamics simulations along x direction.

Figure 3.12.: The autocorrelation functions(left panel) and its integral(right panel) from multiple
equilibrium molecular dynamics simulations along y direction.
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Figure 3.13.: The autocorrelation functions(left panel) and its integral(right panel) from multiple
equilibrium molecular dynamics simulations along z direction.

3.4.2. Thermal conductivity by Green-Kubo method

The lattice thermal conductivity can be calculated by Green-Kubo formula through Eq.
(2.5.38). For each starting conditions Γi

0 chosen from the above NVT molecular dynamics
simulations, NVE molecular dynamics simulations with velocity Verlet algorithm discussed
in Sec. (2.4.1) are performed to generate the time evolution of the system Γi

t , and evaluate
the heat flux, J(t) along this trajectory. The final thermal conductivity with error bars
is shown in Fig. (3.14). Clearly, the x and y components of kappa are nearly 0 which
agrees with the fact that the vibration is limited to z direction. The thermal conductivity
decreases with temperature even if it is already comparatively small value 0.1W/mK. In
addition, in order to inspect the simulation time convergence, every trajectory at 100K is
truncated down to a length of 10 ps, and we applied the workflow presented before to
each of the truncated trajectories. The final value of 0.27±0.25 W/mK is approached
within error bars after the 70000 time steps, which corresponds to a simulation time of
70ps.
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Figure 3.14.: Thermal conductivity at different Temperature(left panel) and the convergence in terms of
the maximum time step(right panel).

The MD technique gives a deterministic non-quantum description of an N-atom system and
temperature TMD can be calculated from the mean kinetic energy Ec based on Boltzmann
distribution function following the straightforward derivation

Ec =
1

2
M

N∑︂
i=1

v2i =
3

2
NkBTMD. (3.4.1)

The validity of relation shown in Eq. (3.4.1) holds only if the heat capacity is not temper-
ature dependent i.e. temperature is greater than the Debye temperature, which however,
does not apply to the results shown in Fig. (3.5). In this case, the true temperature
gradient in the Fourier law must also be corrected according to

1

κMD

dJ

dTMD
=

1

κ

dj

dT
=

1

κ

dJ

dTMD

dTMD

dT
. (3.4.2)

The quantum temperature T is obtained from

E =

∫︂ ∞

0
g(ω)n(ω, T )ℏωdω (3.4.3)

with phonon density of states g(ω) and Bose-Einstein distribution function n(ω, T ).[63,
64] The thermal conductivity after quantum correction is therefore

κ = κMD
dTMD

dT
= κMD

cv
CMD
v

. (3.4.4)

To be more specific, the quantum specific heat at 200K can be read as 30 J/K/mol
from Fig.(3.5) and the classic one is 3NAkB from Dulong-Petit law, 24.9 J/K/mol. Thus,
given the thermal conductivity from MD simulations at 200K, 0.13W/mK, the quantum-
corrected thermal conductivity will be 0.11W/mK.
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4. Properties of Magnesium oxide

Periclase magnesium oxide (MgO) is a well-known harmonic material which can be applied
as a typical benchmark system for perturbative heat transport techniques. In this part, the
vibrational properties of MgO are discussed and the thermal conductivity is calculated by
means of lattice dynamics method and then compared with the literature. The primitive
structure of MgO shown in Fig. (4.1) comes from Material project with the lattice constant
a=b=c=2.95Å. The red ball represents Oxygen atom and the yellow one is Magnesium
atom. The unit cell for MgO has a rhombohedral crystal structure with the same lattice
vector length and angles between each two of them are the same as well. Still, similar
to what we have done in Sec. (3.1), the primitive structure is optimized with different
Monkhorst-Pack grid and basis set. From the below Fig. (4.2), the total energy decreases
with denser k grid and the relaxation by intermediate-default basis results in only 0.2
eV lower final energy than light default basis, which means the light basis set is good
enough to satisfy the total energy convergence standard. In addition, both the energy and
lattice constant qualitatively converge with k grid (4× 4× 4) with the Perdew-Wang LDA
functional.

Figure 4.1.: Rhombohedral crystal structure of MgO with a=b=c and α=β=γ .
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Figure 4.2.: Energy and lattice constant convergency with k grid and basis set for MgO crystal.

4.1. Vibrational Properties of MgO in the Harmonic Approxima-
tion

The phonon band structures for MgO are given by phonopy-FHI-vibes interface for conven-
tional cubic (1× 1× 1), (2× 2× 2), (3× 3× 3) and (4× 4× 4) supercell containing 8, 64,
216, 512 atoms respectively, shown in Fig. (4.3). In comparison with the fully supercell
converged (3× 3× 3) band structure, the (1× 1× 1) band structure exhibits e.g. over- and
underestimated dispersion in the low or high frequency spectrum, and large deviations at
the high-symmetry point L. Interestingly, the phonon branch does not split like the case in
(2× 2× 2), (3× 3× 3) and (4× 4× 4) supercells. This phonon mode splitting into two
components can be associated with the symmetric and anti-symmetric displacements of
the atoms[65]. On contrary, the (2× 2× 2) band structure is essentially indistinguishable
from the (3× 3× 3) band structure at low frequencies (< 12 THz); for the high-frequency
region, all qualitative features are well reproduced and only small quantitative deviances
with a maximal value 2 THz are observed. Therefore, all calculations presented in next step
were performed in a (2×2×2) supercell with a good compromise between computational
cost and accuracy.
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Figure 4.3.: Phonon band structure of MgO in the first (111), second (222), third (333) and fourth (444)
cubic supercell calculated with PW-LDA functional and light basis set .

Additionally, Fig. (4.4) shows the thermodynamic potentials (free energy F and entropy
S) and the respective specific heat Cv of MgO with respect to temperature, which were
computed from the harmonic force constants with an extended (45× 45× 45) q grid as
discussed in Sec. (2.3.1). It can be observed that the heat capacity is raised continuously
on increasing in temperature and it has a typical quantum-mechanical T 3 dependence
at low temperatures before approaching the classical Dulong-Petit limit at around 500K,
which is consistent with the calculated and measured values.[66]
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Figure 4.4.: Free energy and entropy of MgO and the respective specific heat Cv computed in the
harmonic approximation. .

4.2. Lattice thermal conductivity by phono3py calculation

The vibrations of the atoms in a crystal can be described by a superposition of plane wave
normal modes, ranging in frequency from the ultrasonic to the infrared regime. At high
temperatures, the thermal equilibrium vibrational properties are dominated by the modes
of highest frequency, but the lattice thermal conductivity depends on the behavior of waves
at all frequencies. Exactly the same as the workflow in Sec. (3.2.1), the lattice thermal
conductivity starts from computing the third order force constant followed by the lifetime
and lastly kappa. Obviously, calculations on this structure requires more computational
effort, generally in the order of 3N × 3N × 3N , since it has a more complex structure,
more atoms compared with the CH2 chain in one dimension. However, similar to phonopy
package, phono3py code package provides to reduce the computational effort by means of
the symmetry. For example, only 194 structures were evaluated in a 64-atom (2× 2× 2)
supercell. Even so, the computation load is much heavy for larger supercell. For 216-atom
(3× 3× 3) and 512-atom (4× 4× 4) supercell, the third order constant(fc3) calculation
requires 530 and 1122 structures. In this case, it is neither necessary nor possible to
the compute some elements of supercell-fc3 if the interaction range of third order force
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constant among triplets of atoms is expected to be shorter than chosen supercell size. This
can be implemented in practice by the option cutoff-pair-distance provided in phono3py.
The option cutoff-pair-distance has the same unit as the lattice constant, i.e. Å, whose
upper limit is considered for convenience as the half of supercell size due to the minimum
image convention while the lower limit will be the distance between two closest atoms.
For instance, the cut-off distance is picked up from (2 × 2 × 2) supercell as 2.5 Å, 3.0
Å, and 4.0 Å and so on, to inspect the influence of this parameter on the lattice thermal
conductivity. For a periodic system, integrals in real space over the (infinitely extended)
system are replaced by integrals over the (finite) first Brillouin zone in reciprocal space,
by virtue of Bloch’s theorem. In FHI-aims, such integrals are performed by summing the
function values of the integrand, for instance, the charge density at a finite number of
points in the Brillouin zone, called the q-point mesh. As the default behavior, the center of
mesh is determined by the Monkhorst-Pack scheme as shown in 3.1. To be more specific,
we take the cutoff 2.5 Å case as an example, where (8 × 8 × 8) mesh, (10 × 10 × 10)
mesh, (16× 16× 16) mesh and (20× 20× 20) mesh are chosen to calculate the third order
constant represented in Eq. (2.3.22) respectively, shown in Fig. (4.5).
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Figure 4.5.: Fitting and Extrapolation of the thermal conductivity for MgO (2× 2× 2) supercell with cutoff
pair distance 2.5 Å .

Then a linear fitting is applied and the fitting line is extrapolated to the infinity to represent
the infinite integral. The intercept indicated in red color is the final thermal conductivity at
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this cutoff distance. By repeating this process in other cutoff distances and other supercell,
i.e. (3× 3× 3), (4× 4× 4) shown in Appendix A, the convergence in terms of the mesh
size, cutoff distance and supercell size can be inspected. After the linear fitting and the
results comparison between different cutoff distance, the thermal conductivity at 300K
for (2× 2× 2) and (3× 3× 3) supercell are 89.8±0.2 and 84.4±0.8W/mK. However, as
we can see in Fig.(4.6), the thermal conductivity at 300K for MgO (4× 4× 4) supercell is
much smaller, with the value 69.2±1.0W/mK.
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Figure 4.6.: Thermal conductivity with different cutoff distance after fitting and extrapolation for MgO
(4× 4× 4) supercell .

In order to validate our calculation results, experimental and theoretical studies on the
lattice thermal conductivity under ambient pressure are shown in Fig. (4.7), where the
dashed double-dotted line represents the ab initio anharmonic lattice dynamics simulations
using the RTA with the isotopic correction[67]. It can be noticed that the value is around
65W/mK, which is also similar to our calculation.
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Figure 4.7.: Reference for thermal conductivity with temperature ranging from 300K to 1000K[68] .

Several more reference results from different groups are shown in Table (4.1). When com-
pared with the literature, both experimental and theoretical values, the phonopy interface
approaches a larger value which can be attributed to underestimated lattice constants
due to the LDA functional[67] resulting in large discrepancies with measured values.
Interestingly, if we compare the result from Green-Kubo calculation[54], 68.8±6.1W/mK
and lattice dynamics method, 69.2±1.0 W/mK, it can be noticed that the results are
quite close, which can be explained by the fact the MgO is a harmonic crystal and thus
anharmonicity does not have much influence on the thermal conductivity.

Table 4.1.
Reference Thermal conductivity at 300KW/mK

Experiment MacPherson and Schloessin[69] 61.7 ± 10.5
Katsura[70] 65 ± 15

Hofmeister[71] 50.1
Theory de Koker[72] (LDA) 70.3±8.9

Dekura et.al[73] (LDA) ≈ 54
Tang et al. [67] (LDA) 66
Plata et al.[74] (PBE) 54.06
Xia et al.[75] (PBE) 50.1-58.7

Florian [54] (ai Green-Kubo) 68.8 ± 6.1

In addition, isotope effects have been reported that a simple isotope substitution has a
surprisingly large impact on the lifetime of a specific mode and thus leads to a higher
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thermal conductivity than the experimental results.[76] For instance, the thermal con-
ductivity reaches its maximum at 227K for Si192 and drops significantly with the isotope
Si182

56Si10 which can be related to the localization of some impurity-related modes.[64]
The average atomic masses directly affect the phonon frequencies via dynamic matrix and
the three-phonon interaction strengths defined in Eq. (2.3.22). In phono3py packages,
the natural mass variation at atomic sites can introduce additional isotope scattering and
thus reduce the lattice thermal conductivity due to the presence of isotopes with different
masses, which partly explains the overestimated values compared with the experiment
results.
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5. Thermal Conductivities for Strongly
Anharmonic Compounds

In this section, we benchmark the lattice dynamics method on four model systems with
high anharmonicity score to compare the accuracy of perturbative and non-perturbative
GK calculations for realistic materials. We choose these materials from a set of compounds
investigated with the GK method by Knoop[54]. The thermal conductivity for 33 materials
without experimental reference by means of ab initio Green-Kubo methods is shown in
Fig. (5.1), where the x axis indicates the anharmonicity discussed in Sec. (2.3.2), and
their corresponding thermal conductivity can be read from the y axis. Figures and data
for all compounds by ab initio Green-Kubo calculation are from Ref. [54].

Figure 5.1.: Thermal conductivity at room temperature computed via ab initio Green Kubo (aiGK) vs.
anharmonicity measure. Filled symbols denote materials without experimental reference. Fig.

from Ref. [54] .

The dashed diagonal line indicates an inverse linear fitting for the relationship between
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the logarithms of thermal conductivity and anharmonicity for the binary materials in the
dataset.

κ
(︁
σA
)︁
≈ 0.02 ·

(︁
σA
)︁−4.8 (5.0.1)

The light grey and the dark grey regions denote a deviation from the experiment with 50%
and 15% respectively. This correlation implies an qualitative estimator for the thermal
conductivity provided with the anharmonicity score without the requirement of further
vibrational properties. Specifically, diamond, as an allotropy of carbon, posses a well-known
large thermal conductivity of 3000W/mK[77] and therefore, the above linear fitting is
intuitively correct since diamond is the most harmonic material. Stronger anharmonicity
leads to shorter phonon lifetimes, which results in lower thermal conductivity according
to Eq. (2.3.26). In the following step, LiGaTe2, CsF, LiI, KCaF3 are used as a comparison
to calculate their thermal conductivity at room temperature based on the lattice dynamics
methods via phono3py package. All these materials show very low κ. While all these
materials are far from harmonic, they differ in σ quite significantly. In addition, two
geometries are considered, the one generated in 0K and the one considering lattice
expansion at 300K. For each material, pair cutoff distance and the mesh size convergence
on thermal conductivity are inspected and presented along with other supplementary
in the Appendix B for simplicity. The convergence procedure is the same as the process
discussed for the MgO calculation.

Rock salt structures CsF and LiI

Firstly, we take a look at the simple binary material CsF and LiI, which both have rock salt
crystal structure, as shown in Fig. (5.2). The supercell size is constructed as conventional
cubic (3× 3× 3), containing 216 atoms, which gives the phonon band structures shown
in Fig. (5.3).

Figure 5.2.: Crystal structure of binary cubic rock salt CsF and LiI.
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Figure 5.3.: Phonon band structure for CsF(left panel) and LiI(right panel) with or without lattice expansion

It can be noticed that for each material accounting for lattice expansion only increases
the frequency slightly and the shape of the optical branches are similar except that the
maximum frequency for CsF is 6 THz while around 8 THz for LiI, which implies that
the thermal conductivity for LiI should be a bit larger than that for CsF. This hint is
then proved by the following phono3py calculation, shown in Fig. (5.4) and Fig. (5.5),
where among the total 530 structures, more than 300 structures are calculated with the
cutoff distance 10 Å. The thermal conductivity for CsF at room temperature is 0.83±0.05
W/mK without considering the lattice expansion but it will be 1.2±0.1 W/mK if the
lattice is expanded. This discrepancy due to the thermal expansion is not observed in
LiI, where in both condition, a kappa value of 1.4±0.1W/mK is obtained. The thermal
conductivity obtained via the aiGK method including lattice expansion is lower by 0.36
and 0.33W/mK, and they are 0.84 and 1.07W/mK for CsF and LiI respectively, which
corresponds to a relative error of 42.8% and 30.8%.
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Figure 5.4.: Cutoff distance convergence on thermal conductivity at 300K for CsF with(left panel) or
without(right panel) lattice expansion.
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Figure 5.5.: Cutoff distance convergence on thermal conductivity at 300K for LiI with(left panel) or
without(right panel) lattice expansion.

Perovskites KCaF3

For the strongly anharmonic perovskites compounds KCaF3, (3 × 3 × 3) conventional
standard supercell containing 158 atoms is calculated for 14931 displacement, among
which 2613 structures are considered by setting the cutoff distance as 5 Å. The phonon
band structure shown in the right panel of Fig. (5.6) suggests a larger kappa than CsF
and LiI since the maximum frequency of approximately 13 THz is higher. However, this is
not the case in the lattice dynamics calculation shown in Fig. (5.7).
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Figure 5.6.: Crystal structure and phonon band structure for KCaF3.

It can be observed that with more calculated structures by adjusting the pair cutoff
distance, the thermal conductivity decreases for both situation considering the lattice
expansion or not. The convergence appears at 5 Å with the thermal conductivity at 300K
0.7 and 1.0 W/mK without or with thermal expansion respectively. Compared in the
aiGK calculations, κ is under-estimated considerably by 100%, for KCaF3 with 1.0W/mK
compared to 2 W/mK in GK calculation. This is a result of the large anharmonicity
force contributions, which makes up nearly 60% of the total force as discussed in Sec.
(2.4.4). Its large anharmonicity means that the cubic and higher-order anharmonic terms
in Born–Oppenheimer (BO) energy surface can not be considered as small perturbations.
Interestingly, these higher order terms appear to increase the thermal conductivity. This is
consistent with the fact that KCaF3 is known to undergo a phase transition to a higher-
symmetry structure, which is not accounted for in perturbative approaches.
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Figure 5.7.: Cutoff distance convergence on thermal conductivity at 300K for KCaF with(left panel) or
without(right panel) lattice expansion.

Ternary chalcopyrite LiGaTe2

Li-containing ternary chalcopyrite compounds have been reported to posses nonzero
second order nonlinear susceptibility.[78] Thermal conductivity is important for the
optical properties in the efficiency of the outputs of the devices by affecting the absorption
of optical energy.[79] In order to calculate the phonon band structure, the supercell matrix

is chosen as

⎛⎝0 3 3
3 0 3
1 1 −1

⎞⎠, so the supercell contains 216 atoms. It can be observed that

in the right panel of Fig. (5.8), the optical branches are flat and non-dispersive, which
correspond to localized atomic motion in the system and therefore carry little heat.
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Figure 5.8.: Crystal structure and phonon band structure for LiGaTe2.

Due to the large amount of the 31128 total structures, a small cutoff distance 4 Å is
chosen to save the computational effort. In this case, 744 structures are calculated and
the resulted thermal conductivity is 1.25W/mK at 300K. This value is a bit larger than
the aiGK calculation result 0.81 ± 0.15W/mK with a relative error of 54.3%, which can
be attributed to the strong scattering of phonon quasiparticles by anharmonicity[80].
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6. Conclusion

Thermal conductivity characterizes the ability of the material to transfer the heat, which is
essential in thermoelectric devices design. In this work, in order to calculate the thermal
conductivity, lattice dynamics method based on phonon scatterings and ab initio Green-
kubo method are employed and compared. The calculation on CH2 chain shows a simple
example of the work flow of aiGK method and the following MgO calculation explains the
lattice dynamic method realized by phono3py package. In the last part, the benchmark
based on 4 strong anharmonic materials shows that anharmonicity score gives a hint to
choose the suitable method. Generally, when the anharmonicity is small, both lattice
dynamic method and aiGK method provide acceptable results, for example MgO. On the
contrary, if the material exhibits strong anharmonicity, aiGK method can differ from LD
methods quite significantly. Although absolute errors are relatively small(< 1W/mK),
relative errors can be as large as 100%. As a consequence, both methods predict the
materials to be insulating, but the actual ranking differs, since higher-order terms can
both increase and decrease the thermal conductivity. For accurate predictions in the
W/mK-regime, the aiGK method should thus be used to account for the anharmonicity.
Nevertheless, more materials should be further calculated to give a more general criterion.
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A. Thermal conductivity for MgO with
different supercell size
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Figure A.2.: Thermal conductivity with different cutoff distance after fitting and extrapolation for MgO
(2× 2× 2) supercell .
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Figure A.1.: Fitting and extrapolation of thermal conductivity for supercell (2× 2× 2) at 300K with
different cutoff distance.
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Figure A.3.: Fitting and extrapolation of thermal conductivity for supercell (2× 2× 2) at 300K with
different cutoff distance.
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Figure A.5.: Fitting and extrapolation of thermal conductivity for supercell (4× 4× 4) at 300K with
different cutoff distance.

5/2 3 4 8
cutoff (Å)

60

65

70

75

80

85

90

95

100

Ka
pp

a 
(W

/m
-K

)

Cutoff dependence on Thermal conductivity for MgO

Figure A.4.: Thermal conductivity with different cutoff distance after fitting and extrapolation for MgO
(3× 3× 3) supercell .
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B. Vibrational properties of Strongly
Anharmonic CsF
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Figure B.1.: Phonon band structure and DOS for CsF
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(a) Thermal conductivity for CsF with cutoff
distance 2.5 Å.
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(b) Thermal conductivity for CsF with cutoff
distance 5 Å.
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(c) Thermal conductivity for CsF with cutoff
distance 8 Å.
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(d) Thermal conductivity for CsF with cutoff
distance 10 Å.

Figure B.2.: Fitting and extrapolation of thermal conductivity at 300K for CsF without lattice expansion.

92



1/16 1/8 1/4
 1/nq

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ka
pp

a 
(W

/m
-K

) 1.34

Thermal conductivity for CsF with cutoff 2.5

(a) Thermal conductivity for CsF with cutoff
distance 2.5 Å.
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(b) Thermal conductivity for CsF with cutoff
distance 5 Å.
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(c) Thermal conductivity for CsF with cutoff
distance 8 Å.
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(d) Thermal conductivity for CsF with cutoff
distance 10 Å.

Figure B.3.: Fitting and extrapolation of thermal conductivity at 300K for CsF with lattice expansion.
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C. Vibrational properties of Strongly
Anharmonic LiGaTe
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Figure C.1.: Phonon band structure and DOS for LiGaTe
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Figure C.2.: Fitting and extrapolation of thermal conductivity at 300K for LiGaTe with lattice expansion
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D. Vibrational properties of Strongly
Anharmonic LiI
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Figure D.1.: Phonon band structure and DOS for LiI.
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(a) Thermal conductivity for LiI with cutoff
distance 2.5 Å.

1/16 1/8 1/4
 1/nq

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ka
pp

a 
(W

/m
-K

)

1.4

Thermal conductivity for LiI with cutoff 5

(b) Thermal conductivity for LiI with cutoff
distance 5 Å.
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(c) Thermal conductivity for LiI with cutoff
distance 8 Å.
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(d) Thermal conductivity for LiI with cutoff
distance 10 Å.

Figure D.2.: Fitting and extrapolation of thermal conductivity at 300K for LiI without lattice expansion.
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(a) Thermal conductivity for LiI with cutoff
distance 2.5 Å.
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(b) Thermal conductivity for LiI with cutoff
distance 5 Å.
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(c) Thermal conductivity for LiI with cutoff
distance 8 Å.
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(d) Thermal conductivity for LiI with cutoff
distance 10 Å.

Figure D.3.: Fitting and extrapolation of thermal conductivity at 300K for LiI with lattice expansion.
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E. Vibrational properties of Strongly
Anharmonic KCaF
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Figure E.1.: Phonon band structure and DOS for KCaF
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(a) Thermal conductivity for KCaF with cutoff
distance 2.5 Å.
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(b) Thermal conductivity for KCaF with cutoff
distance 3 Å.
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(c) Thermal conductivity for KCaF with cutoff
distance 4 Å.
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(d) Thermal conductivity for KCaF with cutoff
distance 5 Å.

Figure E.2.: Fitting and extrapolation of thermal conductivity at 300K for KCaF without lattice expansion.
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(a) Thermal conductivity for KCaF with cutoff
distance 2.5 Å.
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(b) Thermal conductivity for KCaF with cutoff
distance 3 Å.
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(c) Thermal conductivity for KCaF with cutoff
distance 4 Å.
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(d) Thermal conductivity for KCaF with cutoff
distance 5 Å.

Figure E.3.: Fitting and extrapolation of thermal conductivity at 300K for KCaF with lattice expansion.
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